Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+2y=0,3x-y=2
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+2y=0
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-2y
Тигезләмәнең ике ягыннан 2y алыгыз.
x=\frac{1}{2}\left(-2\right)y
Ике якны 2-га бүлегез.
x=-y
\frac{1}{2}'ны -2y тапкыр тапкырлагыз.
3\left(-1\right)y-y=2
Башка тигезләмәдә x урынына -y куегыз, 3x-y=2.
-3y-y=2
3'ны -y тапкыр тапкырлагыз.
-4y=2
-3y'ны -y'га өстәгез.
y=-\frac{1}{2}
Ике якны -4-га бүлегез.
x=-\left(-\frac{1}{2}\right)
-\frac{1}{2}'ны y өчен x=-y'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{1}{2}
-1'ны -\frac{1}{2} тапкыр тапкырлагыз.
x=\frac{1}{2},y=-\frac{1}{2}
Система хәзер чишелгән.
2x+2y=0,3x-y=2
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
\left(\begin{matrix}2&2\\3&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2\times 3}&-\frac{2}{2\left(-1\right)-2\times 3}\\-\frac{3}{2\left(-1\right)-2\times 3}&\frac{2}{2\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\\frac{3}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 2\\-\frac{1}{4}\times 2\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{1}{2}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{1}{2},y=-\frac{1}{2}
x һәм y матрица элементларын чыгартыгыз.
2x+2y=0,3x-y=2
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 2x+3\times 2y=0,2\times 3x+2\left(-1\right)y=2\times 2
2x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
6x+6y=0,6x-2y=4
Гадиләштерегез.
6x-6x+6y+2y=-4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x-2y=4'ны 6x+6y=0'нан алыгыз.
6y+2y=-4
6x'ны -6x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 6x һәм -6x шартлар кыскартылган.
8y=-4
6y'ны 2y'га өстәгез.
y=-\frac{1}{2}
Ике якны 8-га бүлегез.
3x-\left(-\frac{1}{2}\right)=2
-\frac{1}{2}'ны y өчен 3x-y=2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x=\frac{3}{2}
Тигезләмәнең ике ягыннан \frac{1}{2} алыгыз.
x=\frac{1}{2}
Ике якны 3-га бүлегез.
x=\frac{1}{2},y=-\frac{1}{2}
Система хәзер чишелгән.