Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x-3y=1,x+3y=2
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x-3y=1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=3y+1
Тигезләмәнең ике ягына 3y өстәгез.
3y+1+3y=2
Башка тигезләмәдә x урынына 3y+1 куегыз, x+3y=2.
6y+1=2
3y'ны 3y'га өстәгез.
6y=1
Тигезләмәнең ике ягыннан 1 алыгыз.
y=\frac{1}{6}
Ике якны 6-га бүлегез.
x=3\times \frac{1}{6}+1
\frac{1}{6}'ны y өчен x=3y+1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{1}{2}+1
3'ны \frac{1}{6} тапкыр тапкырлагыз.
x=\frac{3}{2}
1'ны \frac{1}{2}'га өстәгез.
x=\frac{3}{2},y=\frac{1}{6}
Система хәзер чишелгән.
x-3y=1,x+3y=2
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\right)}&-\frac{-3}{3-\left(-3\right)}\\-\frac{1}{3-\left(-3\right)}&\frac{1}{3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\times 2\\-\frac{1}{6}+\frac{1}{6}\times 2\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{6}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{3}{2},y=\frac{1}{6}
x һәм y матрица элементларын чыгартыгыз.
x-3y=1,x+3y=2
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x-x-3y-3y=1-2
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, x+3y=2'ны x-3y=1'нан алыгыз.
-3y-3y=1-2
x'ны -x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, x һәм -x шартлар кыскартылган.
-6y=1-2
-3y'ны -3y'га өстәгез.
-6y=-1
1'ны -2'га өстәгез.
y=\frac{1}{6}
Ике якны -6-га бүлегез.
x+3\times \frac{1}{6}=2
\frac{1}{6}'ны y өчен x+3y=2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x+\frac{1}{2}=2
3'ны \frac{1}{6} тапкыр тапкырлагыз.
x=\frac{3}{2}
Тигезләмәнең ике ягыннан \frac{1}{2} алыгыз.
x=\frac{3}{2},y=\frac{1}{6}
Система хәзер чишелгән.