Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=2
Икенче тигезләмәне гадиләштерү. Ике як өчен y өстәгез.
-3x+2y=4,x+y=2
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
-3x+2y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
-3x=-2y+4
Тигезләмәнең ике ягыннан 2y алыгыз.
x=-\frac{1}{3}\left(-2y+4\right)
Ике якны -3-га бүлегез.
x=\frac{2}{3}y-\frac{4}{3}
-\frac{1}{3}'ны -2y+4 тапкыр тапкырлагыз.
\frac{2}{3}y-\frac{4}{3}+y=2
Башка тигезләмәдә x урынына \frac{-4+2y}{3} куегыз, x+y=2.
\frac{5}{3}y-\frac{4}{3}=2
\frac{2y}{3}'ны y'га өстәгез.
\frac{5}{3}y=\frac{10}{3}
Тигезләмәнең ике ягына \frac{4}{3} өстәгез.
y=2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{5}{3} тигезләмәнең ике ягын да бүлегез.
x=\frac{2}{3}\times 2-\frac{4}{3}
2'ны y өчен x=\frac{2}{3}y-\frac{4}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{4-4}{3}
\frac{2}{3}'ны 2 тапкыр тапкырлагыз.
x=0
Гомуми ваклаучыны табып һәм санаучыларны өстәп, -\frac{4}{3}'ны \frac{4}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=0,y=2
Система хәзер чишелгән.
x+y=2
Икенче тигезләмәне гадиләштерү. Ике як өчен y өстәгез.
-3x+2y=4,x+y=2
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&-\frac{3}{-3-2}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 4+\frac{2}{5}\times 2\\\frac{1}{5}\times 4+\frac{3}{5}\times 2\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=0,y=2
x һәм y матрица элементларын чыгартыгыз.
x+y=2
Икенче тигезләмәне гадиләштерү. Ике як өчен y өстәгез.
-3x+2y=4,x+y=2
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-3x+2y=4,-3x-3y=-3\times 2
-3x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны -3'га тапкырлагыз.
-3x+2y=4,-3x-3y=-6
Гадиләштерегез.
-3x+3x+2y+3y=4+6
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -3x-3y=-6'ны -3x+2y=4'нан алыгыз.
2y+3y=4+6
-3x'ны 3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -3x һәм 3x шартлар кыскартылган.
5y=4+6
2y'ны 3y'га өстәгез.
5y=10
4'ны 6'га өстәгез.
y=2
Ике якны 5-га бүлегез.
x+2=2
2'ны y өчен x+y=2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=0
Тигезләмәнең ике ягыннан 2 алыгыз.
x=0,y=2
Система хәзер чишелгән.