Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

-2x+y=-1,4x-y=-3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
-2x+y=-1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
-2x=-y-1
Тигезләмәнең ике ягыннан y алыгыз.
x=-\frac{1}{2}\left(-y-1\right)
Ике якны -2-га бүлегез.
x=\frac{1}{2}y+\frac{1}{2}
-\frac{1}{2}'ны -y-1 тапкыр тапкырлагыз.
4\left(\frac{1}{2}y+\frac{1}{2}\right)-y=-3
Башка тигезләмәдә x урынына \frac{1+y}{2} куегыз, 4x-y=-3.
2y+2-y=-3
4'ны \frac{1+y}{2} тапкыр тапкырлагыз.
y+2=-3
2y'ны -y'га өстәгез.
y=-5
Тигезләмәнең ике ягыннан 2 алыгыз.
x=\frac{1}{2}\left(-5\right)+\frac{1}{2}
-5'ны y өчен x=\frac{1}{2}y+\frac{1}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-5+1}{2}
\frac{1}{2}'ны -5 тапкыр тапкырлагыз.
x=-2
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{1}{2}'ны -\frac{5}{2}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=-2,y=-5
Система хәзер чишелгән.
-2x+y=-1,4x-y=-3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-1\\-3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-2\left(-1\right)-4}&-\frac{1}{-2\left(-1\right)-4}\\-\frac{4}{-2\left(-1\right)-4}&-\frac{2}{-2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}-1\\-3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\2&1\end{matrix}\right)\left(\begin{matrix}-1\\-3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-3\right)\\2\left(-1\right)-3\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-2,y=-5
x һәм y матрица элементларын чыгартыгыз.
-2x+y=-1,4x-y=-3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4\left(-2\right)x+4y=4\left(-1\right),-2\times 4x-2\left(-1\right)y=-2\left(-3\right)
-2x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны -2'га тапкырлагыз.
-8x+4y=-4,-8x+2y=6
Гадиләштерегез.
-8x+8x+4y-2y=-4-6
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -8x+2y=6'ны -8x+4y=-4'нан алыгыз.
4y-2y=-4-6
-8x'ны 8x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -8x һәм 8x шартлар кыскартылган.
2y=-4-6
4y'ны -2y'га өстәгез.
2y=-10
-4'ны -6'га өстәгез.
y=-5
Ике якны 2-га бүлегез.
4x-\left(-5\right)=-3
-5'ны y өчен 4x-y=-3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x=-8
Тигезләмәнең ике ягыннан 5 алыгыз.
x=-2
Ике якны 4-га бүлегез.
x=-2,y=-5
Система хәзер чишелгән.