Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=21,0.25x+0.05y=3.35
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=21
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+21
Тигезләмәнең ике ягыннан y алыгыз.
0.25\left(-y+21\right)+0.05y=3.35
Башка тигезләмәдә x урынына -y+21 куегыз, 0.25x+0.05y=3.35.
-0.25y+5.25+0.05y=3.35
0.25'ны -y+21 тапкыр тапкырлагыз.
-0.2y+5.25=3.35
-\frac{y}{4}'ны \frac{y}{20}'га өстәгез.
-0.2y=-1.9
Тигезләмәнең ике ягыннан 5.25 алыгыз.
y=9.5
Ике якны -5-га тапкырлагыз.
x=-9.5+21
9.5'ны y өчен x=-y+21'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=11.5
21'ны -9.5'га өстәгез.
x=11.5,y=9.5
Система хәзер чишелгән.
x+y=21,0.25x+0.05y=3.35
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\3.35\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}21\\3.35\end{matrix}\right)
\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}21\\3.35\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}21\\3.35\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.05}{0.05-0.25}&-\frac{1}{0.05-0.25}\\-\frac{0.25}{0.05-0.25}&\frac{1}{0.05-0.25}\end{matrix}\right)\left(\begin{matrix}21\\3.35\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25&5\\1.25&-5\end{matrix}\right)\left(\begin{matrix}21\\3.35\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25\times 21+5\times 3.35\\1.25\times 21-5\times 3.35\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11.5\\9.5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=11.5,y=9.5
x һәм y матрица элементларын чыгартыгыз.
x+y=21,0.25x+0.05y=3.35
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
0.25x+0.25y=0.25\times 21,0.25x+0.05y=3.35
x һәм \frac{x}{4} тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 0.25'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
0.25x+0.25y=5.25,0.25x+0.05y=3.35
Гадиләштерегез.
0.25x-0.25x+0.25y-0.05y=5.25-3.35
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 0.25x+0.05y=3.35'ны 0.25x+0.25y=5.25'нан алыгыз.
0.25y-0.05y=5.25-3.35
\frac{x}{4}'ны -\frac{x}{4}'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, \frac{x}{4} һәм -\frac{x}{4} шартлар кыскартылган.
0.2y=5.25-3.35
\frac{y}{4}'ны -\frac{y}{20}'га өстәгез.
0.2y=1.9
Гомуми ваклаучыны табып һәм санаучыларны өстәп, 5.25'ны -3.35'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
y=9.5
Ике якны 5-га тапкырлагыз.
0.25x+0.05\times 9.5=3.35
9.5'ны y өчен 0.25x+0.05y=3.35'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
0.25x+0.475=3.35
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, 0.05'ны 9.5 тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
0.25x=2.875
Тигезләмәнең ике ягыннан 0.475 алыгыз.
x=11.5
Ике якны 4-га тапкырлагыз.
x=11.5,y=9.5
Система хәзер чишелгән.