Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

4x+2y=50,x+y=20
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
4x+2y=50
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
4x=-2y+50
Тигезләмәнең ике ягыннан 2y алыгыз.
x=\frac{1}{4}\left(-2y+50\right)
Ике якны 4-га бүлегез.
x=-\frac{1}{2}y+\frac{25}{2}
\frac{1}{4}'ны -2y+50 тапкыр тапкырлагыз.
-\frac{1}{2}y+\frac{25}{2}+y=20
Башка тигезләмәдә x урынына \frac{-y+25}{2} куегыз, x+y=20.
\frac{1}{2}y+\frac{25}{2}=20
-\frac{y}{2}'ны y'га өстәгез.
\frac{1}{2}y=\frac{15}{2}
Тигезләмәнең ике ягыннан \frac{25}{2} алыгыз.
y=15
Ике якны 2-га тапкырлагыз.
x=-\frac{1}{2}\times 15+\frac{25}{2}
15'ны y өчен x=-\frac{1}{2}y+\frac{25}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-15+25}{2}
-\frac{1}{2}'ны 15 тапкыр тапкырлагыз.
x=5
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{25}{2}'ны -\frac{15}{2}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=5,y=15
Система хәзер чишелгән.
4x+2y=50,x+y=20
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\20\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}4&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
\left(\begin{matrix}4&2\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&1\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{2}{4-2}\\-\frac{1}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}50\\20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-1\\-\frac{1}{2}&2\end{matrix}\right)\left(\begin{matrix}50\\20\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 50-20\\-\frac{1}{2}\times 50+2\times 20\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\15\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=5,y=15
x һәм y матрица элементларын чыгартыгыз.
4x+2y=50,x+y=20
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4x+2y=50,4x+4y=4\times 20
4x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 4'га тапкырлагыз.
4x+2y=50,4x+4y=80
Гадиләштерегез.
4x-4x+2y-4y=50-80
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 4x+4y=80'ны 4x+2y=50'нан алыгыз.
2y-4y=50-80
4x'ны -4x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 4x һәм -4x шартлар кыскартылган.
-2y=50-80
2y'ны -4y'га өстәгез.
-2y=-30
50'ны -80'га өстәгез.
y=15
Ике якны -2-га бүлегез.
x+15=20
15'ны y өчен x+y=20'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=5
Тигезләмәнең ике ягыннан 15 алыгыз.
x=5,y=15
Система хәзер чишелгән.