x, y өчен чишелеш
x = \frac{9}{8} = 1\frac{1}{8} = 1.125
y = \frac{11}{4} = 2\frac{3}{4} = 2.75
Граф
Уртаклык
Клип тактага күчереп
2x+y=5,-4x+6y=12
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+y=5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-y+5
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{2}\left(-y+5\right)
Ике якны 2-га бүлегез.
x=-\frac{1}{2}y+\frac{5}{2}
\frac{1}{2}'ны -y+5 тапкыр тапкырлагыз.
-4\left(-\frac{1}{2}y+\frac{5}{2}\right)+6y=12
Башка тигезләмәдә x урынына \frac{-y+5}{2} куегыз, -4x+6y=12.
2y-10+6y=12
-4'ны \frac{-y+5}{2} тапкыр тапкырлагыз.
8y-10=12
2y'ны 6y'га өстәгез.
8y=22
Тигезләмәнең ике ягына 10 өстәгез.
y=\frac{11}{4}
Ике якны 8-га бүлегез.
x=-\frac{1}{2}\times \frac{11}{4}+\frac{5}{2}
\frac{11}{4}'ны y өчен x=-\frac{1}{2}y+\frac{5}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{11}{8}+\frac{5}{2}
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, -\frac{1}{2}'ны \frac{11}{4} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{9}{8}
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{5}{2}'ны -\frac{11}{8}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{9}{8},y=\frac{11}{4}
Система хәзер чишелгән.
2x+y=5,-4x+6y=12
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&1\\-4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}2&1\\-4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
\left(\begin{matrix}2&1\\-4&6\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{1}{2\times 6-\left(-4\right)}\\-\frac{-4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{16}\\\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5-\frac{1}{16}\times 12\\\frac{1}{4}\times 5+\frac{1}{8}\times 12\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{11}{4}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{9}{8},y=\frac{11}{4}
x һәм y матрица элементларын чыгартыгыз.
2x+y=5,-4x+6y=12
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-4\times 2x-4y=-4\times 5,2\left(-4\right)x+2\times 6y=2\times 12
2x һәм -4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
-8x-4y=-20,-8x+12y=24
Гадиләштерегез.
-8x+8x-4y-12y=-20-24
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -8x+12y=24'ны -8x-4y=-20'нан алыгыз.
-4y-12y=-20-24
-8x'ны 8x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -8x һәм 8x шартлар кыскартылган.
-16y=-20-24
-4y'ны -12y'га өстәгез.
-16y=-44
-20'ны -24'га өстәгез.
y=\frac{11}{4}
Ике якны -16-га бүлегез.
-4x+6\times \frac{11}{4}=12
\frac{11}{4}'ны y өчен -4x+6y=12'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-4x+\frac{33}{2}=12
6'ны \frac{11}{4} тапкыр тапкырлагыз.
-4x=-\frac{9}{2}
Тигезләмәнең ике ягыннан \frac{33}{2} алыгыз.
x=\frac{9}{8}
Ике якны -4-га бүлегез.
x=\frac{9}{8},y=\frac{11}{4}
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}