Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+2y=4,-2x+3y=-9
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+2y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-2y+4
Тигезләмәнең ике ягыннан 2y алыгыз.
x=\frac{1}{2}\left(-2y+4\right)
Ике якны 2-га бүлегез.
x=-y+2
\frac{1}{2}'ны -2y+4 тапкыр тапкырлагыз.
-2\left(-y+2\right)+3y=-9
Башка тигезләмәдә x урынына -y+2 куегыз, -2x+3y=-9.
2y-4+3y=-9
-2'ны -y+2 тапкыр тапкырлагыз.
5y-4=-9
2y'ны 3y'га өстәгез.
5y=-5
Тигезләмәнең ике ягына 4 өстәгез.
y=-1
Ике якны 5-га бүлегез.
x=-\left(-1\right)+2
-1'ны y өчен x=-y+2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=1+2
-1'ны -1 тапкыр тапкырлагыз.
x=3
2'ны 1'га өстәгез.
x=3,y=-1
Система хәзер чишелгән.
2x+2y=4,-2x+3y=-9
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-9\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2\left(-2\right)}&-\frac{2}{2\times 3-2\left(-2\right)}\\-\frac{-2}{2\times 3-2\left(-2\right)}&\frac{2}{2\times 3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 4-\frac{1}{5}\left(-9\right)\\\frac{1}{5}\times 4+\frac{1}{5}\left(-9\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=3,y=-1
x һәм y матрица элементларын чыгартыгыз.
2x+2y=4,-2x+3y=-9
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-2\times 2x-2\times 2y=-2\times 4,2\left(-2\right)x+2\times 3y=2\left(-9\right)
2x һәм -2x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -2'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
-4x-4y=-8,-4x+6y=-18
Гадиләштерегез.
-4x+4x-4y-6y=-8+18
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -4x+6y=-18'ны -4x-4y=-8'нан алыгыз.
-4y-6y=-8+18
-4x'ны 4x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -4x һәм 4x шартлар кыскартылган.
-10y=-8+18
-4y'ны -6y'га өстәгез.
-10y=10
-8'ны 18'га өстәгез.
y=-1
Ике якны -10-га бүлегез.
-2x+3\left(-1\right)=-9
-1'ны y өчен -2x+3y=-9'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-2x-3=-9
3'ны -1 тапкыр тапкырлагыз.
-2x=-6
Тигезләмәнең ике ягына 3 өстәгез.
x=3
Ике якны -2-га бүлегез.
x=3,y=-1
Система хәзер чишелгән.