Төп эчтәлеккә скип
Җилгеләгечне исәпләгез
Tick mark Image
Исәпләгез
Tick mark Image

Уртаклык

det(\left(\begin{matrix}3&-1&2\\1&0&-1\\-2&1&4\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}3&-1&2&3&-1\\1&0&-1&1&0\\-2&1&4&-2&1\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
-\left(-1\right)\left(-2\right)+2=0
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-3+4\left(-1\right)=-7
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-\left(-7\right)
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
det(\left(\begin{matrix}3&-1&2\\1&0&-1\\-2&1&4\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
3det(\left(\begin{matrix}0&-1\\1&4\end{matrix}\right))-\left(-det(\left(\begin{matrix}1&-1\\-2&4\end{matrix}\right))\right)+2det(\left(\begin{matrix}1&0\\-2&1\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
3\left(-\left(-1\right)\right)-\left(-\left(4-\left(-2\left(-1\right)\right)\right)\right)+2
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
3-\left(-2\right)+2
Гадиләштерегез.
7
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.