Төп эчтәлеккә скип
Җилгеләгечне исәпләгез
Tick mark Image
Исәпләгез
Tick mark Image

Уртаклык

det(\left(\begin{matrix}2&5&2\\3&2&1\\4&3&1\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}2&5&2&2&5\\3&2&1&3&2\\4&3&1&4&3\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
2\times 2+5\times 4+2\times 3\times 3=42
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
4\times 2\times 2+3\times 2+3\times 5=37
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
42-37
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
5
37'ны 42'нан алыгыз.
det(\left(\begin{matrix}2&5&2\\3&2&1\\4&3&1\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
2det(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))-5det(\left(\begin{matrix}3&1\\4&1\end{matrix}\right))+2det(\left(\begin{matrix}3&2\\4&3\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
2\left(2-3\right)-5\left(3-4\right)+2\left(3\times 3-4\times 2\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
2\left(-1\right)-5\left(-1\right)+2
Гадиләштерегез.
5
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.