Төп эчтәлеккә скип
Җилгеләгечне исәпләгез
Tick mark Image
Исәпләгез
Tick mark Image

Уртаклык

det(\left(\begin{matrix}1&0&2\\1&3&4\\0&6&0\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}1&0&2&1&0\\1&3&4&1&3\\0&6&0&0&6\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
2\times 6=12
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
6\times 4=24
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
12-24
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
-12
24'ны 12'нан алыгыз.
det(\left(\begin{matrix}1&0&2\\1&3&4\\0&6&0\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
det(\left(\begin{matrix}3&4\\6&0\end{matrix}\right))+2det(\left(\begin{matrix}1&3\\0&6\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
-6\times 4+2\times 6
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
-24+2\times 6
Гадиләштерегез.
-12
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.