Төп эчтәлеккә скип
Җилгеләгечне исәпләгез
Tick mark Image
Исәпләгез
Tick mark Image

Уртаклык

det(\left(\begin{matrix}0&1&-1\\-1&0&2\\1&-2&0\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}0&1&-1&0&1\\-1&0&2&-1&0\\1&-2&0&1&-2\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
2-\left(-\left(-2\right)\right)=0
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
\text{true}
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
0
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
det(\left(\begin{matrix}0&1&-1\\-1&0&2\\1&-2&0\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
-det(\left(\begin{matrix}-1&2\\1&0\end{matrix}\right))-det(\left(\begin{matrix}-1&0\\1&-2\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
-\left(-2\right)-\left(-\left(-2\right)\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
-\left(-2\right)-2
Гадиләштерегез.
0
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.