Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Тапкырлаучы
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

det(\left(\begin{matrix}5&1&-5\\3&-4&5\\-4&-3&6\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}5&1&-5&5&1\\3&-4&5&3&-4\\-4&-3&6&-4&-3\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
5\left(-4\right)\times 6+5\left(-4\right)-5\times 3\left(-3\right)=-95
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-4\left(-4\right)\left(-5\right)-3\times 5\times 5+6\times 3=-137
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-95-\left(-137\right)
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
42
-137'ны -95'нан алыгыз.
det(\left(\begin{matrix}5&1&-5\\3&-4&5\\-4&-3&6\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
5det(\left(\begin{matrix}-4&5\\-3&6\end{matrix}\right))-det(\left(\begin{matrix}3&5\\-4&6\end{matrix}\right))-5det(\left(\begin{matrix}3&-4\\-4&-3\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
5\left(-4\times 6-\left(-3\times 5\right)\right)-\left(3\times 6-\left(-4\times 5\right)\right)-5\left(3\left(-3\right)-\left(-4\left(-4\right)\right)\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
5\left(-9\right)-38-5\left(-25\right)
Гадиләштерегез.
42
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.