Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Тапкырлаучы
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

det(\left(\begin{matrix}-1&1&1\\1&4&1\\1&1&5\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}-1&1&1&-1&1\\1&4&1&1&4\\1&1&5&1&1\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
-4\times 5+1+1=-18
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
4-1+5=8
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-18-8
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
-26
8'ны -18'нан алыгыз.
det(\left(\begin{matrix}-1&1&1\\1&4&1\\1&1&5\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
-det(\left(\begin{matrix}4&1\\1&5\end{matrix}\right))-det(\left(\begin{matrix}1&1\\1&5\end{matrix}\right))+det(\left(\begin{matrix}1&4\\1&1\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
-\left(4\times 5-1\right)-\left(5-1\right)+1-4
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
-19-4-3
Гадиләштерегез.
-26
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.