Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Тапкырлаучы
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

det(\left(\begin{matrix}-1&-2&-3\\-2&-3&-5\\-3&-4&-7\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}-1&-2&-3&-1&-2\\-2&-3&-5&-2&-3\\-3&-4&-7&-3&-4\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
-\left(-3\right)\left(-7\right)-2\left(-5\right)\left(-3\right)-3\left(-2\right)\left(-4\right)=-75
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-3\left(-3\right)\left(-3\right)-4\left(-5\right)\left(-1\right)-7\left(-2\right)\left(-2\right)=-75
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-75-\left(-75\right)
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
0
-75'ны -75'нан алыгыз.
det(\left(\begin{matrix}-1&-2&-3\\-2&-3&-5\\-3&-4&-7\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
-det(\left(\begin{matrix}-3&-5\\-4&-7\end{matrix}\right))-\left(-2det(\left(\begin{matrix}-2&-5\\-3&-7\end{matrix}\right))\right)-3det(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
-\left(-3\left(-7\right)-\left(-4\left(-5\right)\right)\right)-\left(-2\left(-2\left(-7\right)-\left(-3\left(-5\right)\right)\right)\right)-3\left(-2\left(-4\right)-\left(-3\left(-3\right)\right)\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
-1-\left(-2\left(-1\right)\right)-3\left(-1\right)
Гадиләштерегез.
0
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.