Төп эчтәлеккә скип
y, x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

y-3x=0
Беренче тигезләмәне гадиләштерү. 3x'ны ике яктан алыгыз.
y-3x=0,y+x=16
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
y-3x=0
Тигезләмәләрнең берсен сайлагыз һәм аны, y'ны тигезләү тамгасының сул ягына аерып, y өчен чишегез.
y=3x
Тигезләмәнең ике ягына 3x өстәгез.
3x+x=16
Башка тигезләмәдә y урынына 3x куегыз, y+x=16.
4x=16
3x'ны x'га өстәгез.
x=4
Ике якны 4-га бүлегез.
y=3\times 4
4'ны x өчен y=3x'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=12
3'ны 4 тапкыр тапкырлагыз.
y=12,x=4
Система хәзер чишелгән.
y-3x=0
Беренче тигезләмәне гадиләштерү. 3x'ны ике яктан алыгыз.
y-3x=0,y+x=16
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-3}{1-\left(-3\right)}\\-\frac{1}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 16\\\frac{1}{4}\times 16\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}12\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
y=12,x=4
y һәм x матрица элементларын чыгартыгыз.
y-3x=0
Беренче тигезләмәне гадиләштерү. 3x'ны ике яктан алыгыз.
y-3x=0,y+x=16
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
y-y-3x-x=-16
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, y+x=16'ны y-3x=0'нан алыгыз.
-3x-x=-16
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
-4x=-16
-3x'ны -x'га өстәгез.
x=4
Ике якны -4-га бүлегез.
y+4=16
4'ны x өчен y+x=16'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=12
Тигезләмәнең ике ягыннан 4 алыгыз.
y=12,x=4
Система хәзер чишелгән.