Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x-4y=-1,2x+y=16
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x-4y=-1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=4y-1
Тигезләмәнең ике ягына 4y өстәгез.
2\left(4y-1\right)+y=16
Башка тигезләмәдә x урынына 4y-1 куегыз, 2x+y=16.
8y-2+y=16
2'ны 4y-1 тапкыр тапкырлагыз.
9y-2=16
8y'ны y'га өстәгез.
9y=18
Тигезләмәнең ике ягына 2 өстәгез.
y=2
Ике якны 9-га бүлегез.
x=4\times 2-1
2'ны y өчен x=4y-1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=8-1
4'ны 2 тапкыр тапкырлагыз.
x=7
-1'ны 8'га өстәгез.
x=7,y=2
Система хәзер чишелгән.
x-4y=-1,2x+y=16
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\16\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}-1\\16\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\times 2\right)}&-\frac{-4}{1-\left(-4\times 2\right)}\\-\frac{2}{1-\left(-4\times 2\right)}&\frac{1}{1-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{4}{9}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-1\\16\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\left(-1\right)+\frac{4}{9}\times 16\\-\frac{2}{9}\left(-1\right)+\frac{1}{9}\times 16\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=7,y=2
x һәм y матрица элементларын чыгартыгыз.
x-4y=-1,2x+y=16
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x+2\left(-4\right)y=2\left(-1\right),2x+y=16
x һәм 2x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 2'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
2x-8y=-2,2x+y=16
Гадиләштерегез.
2x-2x-8y-y=-2-16
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x+y=16'ны 2x-8y=-2'нан алыгыз.
-8y-y=-2-16
2x'ны -2x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 2x һәм -2x шартлар кыскартылган.
-9y=-2-16
-8y'ны -y'га өстәгез.
-9y=-18
-2'ны -16'га өстәгез.
y=2
Ике якны -9-га бүлегез.
2x+2=16
2'ны y өчен 2x+y=16'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
2x=14
Тигезләмәнең ике ягыннан 2 алыгыз.
x=7
Ике якны 2-га бүлегез.
x=7,y=2
Система хәзер чишелгән.