\left\{ \begin{array} { l } { x - 2 y = - 5 } \\ { - 3 x + y = 5 } \end{array} \right.
x, y өчен чишелеш
x=-1
y=2
Граф
Уртаклык
Клип тактага күчереп
x-2y=-5,-3x+y=5
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x-2y=-5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=2y-5
Тигезләмәнең ике ягына 2y өстәгез.
-3\left(2y-5\right)+y=5
Башка тигезләмәдә x урынына 2y-5 куегыз, -3x+y=5.
-6y+15+y=5
-3'ны 2y-5 тапкыр тапкырлагыз.
-5y+15=5
-6y'ны y'га өстәгез.
-5y=-10
Тигезләмәнең ике ягыннан 15 алыгыз.
y=2
Ике якны -5-га бүлегез.
x=2\times 2-5
2'ны y өчен x=2y-5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=4-5
2'ны 2 тапкыр тапкырлагыз.
x=-1
-5'ны 4'га өстәгез.
x=-1,y=2
Система хәзер чишелгән.
x-2y=-5,-3x+y=5
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\5\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}-5\\5\end{matrix}\right)
\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}-5\\5\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&1\end{matrix}\right))\left(\begin{matrix}-5\\5\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\left(-3\right)\right)}&-\frac{-2}{1-\left(-2\left(-3\right)\right)}\\-\frac{-3}{1-\left(-2\left(-3\right)\right)}&\frac{1}{1-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{2}{5}\\-\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-5\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-5\right)-\frac{2}{5}\times 5\\-\frac{3}{5}\left(-5\right)-\frac{1}{5}\times 5\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-1,y=2
x һәм y матрица элементларын чыгартыгыз.
x-2y=-5,-3x+y=5
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-3x-3\left(-2\right)y=-3\left(-5\right),-3x+y=5
x һәм -3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
-3x+6y=15,-3x+y=5
Гадиләштерегез.
-3x+3x+6y-y=15-5
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -3x+y=5'ны -3x+6y=15'нан алыгыз.
6y-y=15-5
-3x'ны 3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -3x һәм 3x шартлар кыскартылган.
5y=15-5
6y'ны -y'га өстәгез.
5y=10
15'ны -5'га өстәгез.
y=2
Ике якны 5-га бүлегез.
-3x+2=5
2'ны y өчен -3x+y=5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-3x=3
Тигезләмәнең ике ягыннан 2 алыгыз.
x=-1
Ике якны -3-га бүлегез.
x=-1,y=2
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}