Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=5,3x+4y=3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+5
Тигезләмәнең ике ягыннан y алыгыз.
3\left(-y+5\right)+4y=3
Башка тигезләмәдә x урынына -y+5 куегыз, 3x+4y=3.
-3y+15+4y=3
3'ны -y+5 тапкыр тапкырлагыз.
y+15=3
-3y'ны 4y'га өстәгез.
y=-12
Тигезләмәнең ике ягыннан 15 алыгыз.
x=-\left(-12\right)+5
-12'ны y өчен x=-y+5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=12+5
-1'ны -12 тапкыр тапкырлагыз.
x=17
5'ны 12'га өстәгез.
x=17,y=-12
Система хәзер чишелгән.
x+y=5,3x+4y=3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\3&4\end{matrix}\right))\left(\begin{matrix}1&1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&4\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
\left(\begin{matrix}1&1\\3&4\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&4\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&4\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-3}&-\frac{1}{4-3}\\-\frac{3}{4-3}&\frac{1}{4-3}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-1\\-3&1\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 5-3\\-3\times 5+3\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-12\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=17,y=-12
x һәм y матрица элементларын чыгартыгыз.
x+y=5,3x+4y=3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+3y=3\times 5,3x+4y=3
x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
3x+3y=15,3x+4y=3
Гадиләштерегез.
3x-3x+3y-4y=15-3
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x+4y=3'ны 3x+3y=15'нан алыгыз.
3y-4y=15-3
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
-y=15-3
3y'ны -4y'га өстәгез.
-y=12
15'ны -3'га өстәгез.
y=-12
Ике якны -1-га бүлегез.
3x+4\left(-12\right)=3
-12'ны y өчен 3x+4y=3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x-48=3
4'ны -12 тапкыр тапкырлагыз.
3x=51
Тигезләмәнең ике ягына 48 өстәгез.
x=17
Ике якны 3-га бүлегез.
x=17,y=-12
Система хәзер чишелгән.