Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=4,2x-y=3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+4
Тигезләмәнең ике ягыннан y алыгыз.
2\left(-y+4\right)-y=3
Башка тигезләмәдә x урынына -y+4 куегыз, 2x-y=3.
-2y+8-y=3
2'ны -y+4 тапкыр тапкырлагыз.
-3y+8=3
-2y'ны -y'га өстәгез.
-3y=-5
Тигезләмәнең ике ягыннан 8 алыгыз.
y=\frac{5}{3}
Ике якны -3-га бүлегез.
x=-\frac{5}{3}+4
\frac{5}{3}'ны y өчен x=-y+4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{7}{3}
4'ны -\frac{5}{3}'га өстәгез.
x=\frac{7}{3},y=\frac{5}{3}
Система хәзер чишелгән.
x+y=4,2x-y=3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4+\frac{1}{3}\times 3\\\frac{2}{3}\times 4-\frac{1}{3}\times 3\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\\\frac{5}{3}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{7}{3},y=\frac{5}{3}
x һәм y матрица элементларын чыгартыгыз.
x+y=4,2x-y=3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x+2y=2\times 4,2x-y=3
x һәм 2x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 2'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
2x+2y=8,2x-y=3
Гадиләштерегез.
2x-2x+2y+y=8-3
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x-y=3'ны 2x+2y=8'нан алыгыз.
2y+y=8-3
2x'ны -2x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 2x һәм -2x шартлар кыскартылган.
3y=8-3
2y'ны y'га өстәгез.
3y=5
8'ны -3'га өстәгез.
y=\frac{5}{3}
Ике якны 3-га бүлегез.
2x-\frac{5}{3}=3
\frac{5}{3}'ны y өчен 2x-y=3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
2x=\frac{14}{3}
Тигезләмәнең ике ягына \frac{5}{3} өстәгез.
x=\frac{7}{3}
Ике якны 2-га бүлегез.
x=\frac{7}{3},y=\frac{5}{3}
Система хәзер чишелгән.