Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+3y=1,2x+3y=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+3y=1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-3y+1
Тигезләмәнең ике ягыннан 3y алыгыз.
2\left(-3y+1\right)+3y=1
Башка тигезләмәдә x урынына -3y+1 куегыз, 2x+3y=1.
-6y+2+3y=1
2'ны -3y+1 тапкыр тапкырлагыз.
-3y+2=1
-6y'ны 3y'га өстәгез.
-3y=-1
Тигезләмәнең ике ягыннан 2 алыгыз.
y=\frac{1}{3}
Ике якны -3-га бүлегез.
x=-3\times \frac{1}{3}+1
\frac{1}{3}'ны y өчен x=-3y+1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-1+1
-3'ны \frac{1}{3} тапкыр тапкырлагыз.
x=0
1'ны -1'га өстәгез.
x=0,y=\frac{1}{3}
Система хәзер чишелгән.
x+3y=1,2x+3y=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}1&3\\2&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-3\times 2}&-\frac{3}{3-3\times 2}\\-\frac{2}{3-3\times 2}&\frac{1}{3-3\times 2}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+1\\\frac{2-1}{3}\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{1}{3}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=0,y=\frac{1}{3}
x һәм y матрица элементларын чыгартыгыз.
x+3y=1,2x+3y=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x-2x+3y-3y=1-1
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x+3y=1'ны x+3y=1'нан алыгыз.
x-2x=1-1
3y'ны -3y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3y һәм -3y шартлар кыскартылган.
-x=1-1
x'ны -2x'га өстәгез.
-x=0
1'ны -1'га өстәгез.
x=0
Ике якны -1-га бүлегез.
3y=1
0'ны x өчен 2x+3y=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=\frac{1}{3}
Ике якны 3-га бүлегез.
x=0,y=\frac{1}{3}
Система хәзер чишелгән.