Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+2y=7,-x+y=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=7
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y+7
Тигезләмәнең ике ягыннан 2y алыгыз.
-\left(-2y+7\right)+y=1
Башка тигезләмәдә x урынына -2y+7 куегыз, -x+y=1.
2y-7+y=1
-1'ны -2y+7 тапкыр тапкырлагыз.
3y-7=1
2y'ны y'га өстәгез.
3y=8
Тигезләмәнең ике ягына 7 өстәгез.
y=\frac{8}{3}
Ике якны 3-га бүлегез.
x=-2\times \frac{8}{3}+7
\frac{8}{3}'ны y өчен x=-2y+7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{16}{3}+7
-2'ны \frac{8}{3} тапкыр тапкырлагыз.
x=\frac{5}{3}
7'ны -\frac{16}{3}'га өстәгез.
x=\frac{5}{3},y=\frac{8}{3}
Система хәзер чишелгән.
x+2y=7,-x+y=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-1\right)}&-\frac{2}{1-2\left(-1\right)}\\-\frac{-1}{1-2\left(-1\right)}&\frac{1}{1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 7-\frac{2}{3}\\\frac{1}{3}\times 7+\frac{1}{3}\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{8}{3}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{5}{3},y=\frac{8}{3}
x һәм y матрица элементларын чыгартыгыз.
x+2y=7,-x+y=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-x-2y=-7,-x+y=1
x һәм -x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
-x+x-2y-y=-7-1
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -x+y=1'ны -x-2y=-7'нан алыгыз.
-2y-y=-7-1
-x'ны x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -x һәм x шартлар кыскартылган.
-3y=-7-1
-2y'ны -y'га өстәгез.
-3y=-8
-7'ны -1'га өстәгез.
y=\frac{8}{3}
Ике якны -3-га бүлегез.
-x+\frac{8}{3}=1
\frac{8}{3}'ны y өчен -x+y=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-x=-\frac{5}{3}
Тигезләмәнең ике ягыннан \frac{8}{3} алыгыз.
x=\frac{5}{3}
Ике якны -1-га бүлегез.
x=\frac{5}{3},y=\frac{8}{3}
Система хәзер чишелгән.