Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+2y=7,4x+3y=3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=7
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y+7
Тигезләмәнең ике ягыннан 2y алыгыз.
4\left(-2y+7\right)+3y=3
Башка тигезләмәдә x урынына -2y+7 куегыз, 4x+3y=3.
-8y+28+3y=3
4'ны -2y+7 тапкыр тапкырлагыз.
-5y+28=3
-8y'ны 3y'га өстәгез.
-5y=-25
Тигезләмәнең ике ягыннан 28 алыгыз.
y=5
Ике якны -5-га бүлегез.
x=-2\times 5+7
5'ны y өчен x=-2y+7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-10+7
-2'ны 5 тапкыр тапкырлагыз.
x=-3
7'ны -10'га өстәгез.
x=-3,y=5
Система хәзер чишелгән.
x+2y=7,4x+3y=3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
\left(\begin{matrix}1&2\\4&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 4}&-\frac{2}{3-2\times 4}\\-\frac{4}{3-2\times 4}&\frac{1}{3-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{2}{5}\\\frac{4}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\times 7+\frac{2}{5}\times 3\\\frac{4}{5}\times 7-\frac{1}{5}\times 3\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-3,y=5
x һәм y матрица элементларын чыгартыгыз.
x+2y=7,4x+3y=3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4x+4\times 2y=4\times 7,4x+3y=3
x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
4x+8y=28,4x+3y=3
Гадиләштерегез.
4x-4x+8y-3y=28-3
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 4x+3y=3'ны 4x+8y=28'нан алыгыз.
8y-3y=28-3
4x'ны -4x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 4x һәм -4x шартлар кыскартылган.
5y=28-3
8y'ны -3y'га өстәгез.
5y=25
28'ны -3'га өстәгез.
y=5
Ике якны 5-га бүлегез.
4x+3\times 5=3
5'ны y өчен 4x+3y=3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x+15=3
3'ны 5 тапкыр тапкырлагыз.
4x=-12
Тигезләмәнең ике ягыннан 15 алыгыз.
x=-3
Ике якны 4-га бүлегез.
x=-3,y=5
Система хәзер чишелгән.