\left\{ \begin{array} { l } { x + 2 y = 1 } \\ { - x + 3 y = - 4 } \end{array} \right.
x, y өчен чишелеш
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
y=-\frac{3}{5}=-0.6
Граф
Уртаклык
Клип тактага күчереп
x+2y=1,-x+3y=-4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y+1
Тигезләмәнең ике ягыннан 2y алыгыз.
-\left(-2y+1\right)+3y=-4
Башка тигезләмәдә x урынына -2y+1 куегыз, -x+3y=-4.
2y-1+3y=-4
-1'ны -2y+1 тапкыр тапкырлагыз.
5y-1=-4
2y'ны 3y'га өстәгез.
5y=-3
Тигезләмәнең ике ягына 1 өстәгез.
y=-\frac{3}{5}
Ике якны 5-га бүлегез.
x=-2\left(-\frac{3}{5}\right)+1
-\frac{3}{5}'ны y өчен x=-2y+1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{6}{5}+1
-2'ны -\frac{3}{5} тапкыр тапкырлагыз.
x=\frac{11}{5}
1'ны \frac{6}{5}'га өстәгез.
x=\frac{11}{5},y=-\frac{3}{5}
Система хәзер чишелгән.
x+2y=1,-x+3y=-4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\-1&3\end{matrix}\right))\left(\begin{matrix}1&2\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}1&2\\-1&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\left(-1\right)}&-\frac{2}{3-2\left(-1\right)}\\-\frac{-1}{3-2\left(-1\right)}&\frac{1}{3-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{2}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}-\frac{2}{5}\left(-4\right)\\\frac{1}{5}+\frac{1}{5}\left(-4\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{5}\\-\frac{3}{5}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{11}{5},y=-\frac{3}{5}
x һәм y матрица элементларын чыгартыгыз.
x+2y=1,-x+3y=-4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-x-2y=-1,-x+3y=-4
x һәм -x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
-x+x-2y-3y=-1+4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -x+3y=-4'ны -x-2y=-1'нан алыгыз.
-2y-3y=-1+4
-x'ны x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -x һәм x шартлар кыскартылган.
-5y=-1+4
-2y'ны -3y'га өстәгез.
-5y=3
-1'ны 4'га өстәгез.
y=-\frac{3}{5}
Ике якны -5-га бүлегез.
-x+3\left(-\frac{3}{5}\right)=-4
-\frac{3}{5}'ны y өчен -x+3y=-4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-x-\frac{9}{5}=-4
3'ны -\frac{3}{5} тапкыр тапкырлагыз.
-x=-\frac{11}{5}
Тигезләмәнең ике ягына \frac{9}{5} өстәгез.
x=\frac{11}{5}
Ике якны -1-га бүлегез.
x=\frac{11}{5},y=-\frac{3}{5}
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}