Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+2y=0,5x+2y=3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=0
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y
Тигезләмәнең ике ягыннан 2y алыгыз.
5\left(-2\right)y+2y=3
Башка тигезләмәдә x урынына -2y куегыз, 5x+2y=3.
-10y+2y=3
5'ны -2y тапкыр тапкырлагыз.
-8y=3
-10y'ны 2y'га өстәгез.
y=-\frac{3}{8}
Ике якны -8-га бүлегез.
x=-2\left(-\frac{3}{8}\right)
-\frac{3}{8}'ны y өчен x=-2y'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{3}{4}
-2'ны -\frac{3}{8} тапкыр тапкырлагыз.
x=\frac{3}{4},y=-\frac{3}{8}
Система хәзер чишелгән.
x+2y=0,5x+2y=3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
\left(\begin{matrix}1&2\\5&2\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3\\-\frac{1}{8}\times 3\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\-\frac{3}{8}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{3}{4},y=-\frac{3}{8}
x һәм y матрица элементларын чыгартыгыз.
x+2y=0,5x+2y=3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x-5x+2y-2y=-3
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 5x+2y=3'ны x+2y=0'нан алыгыз.
x-5x=-3
2y'ны -2y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 2y һәм -2y шартлар кыскартылган.
-4x=-3
x'ны -5x'га өстәгез.
x=\frac{3}{4}
Ике якны -4-га бүлегез.
5\times \frac{3}{4}+2y=3
\frac{3}{4}'ны x өчен 5x+2y=3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
\frac{15}{4}+2y=3
5'ны \frac{3}{4} тапкыр тапкырлагыз.
2y=-\frac{3}{4}
Тигезләмәнең ике ягыннан \frac{15}{4} алыгыз.
y=-\frac{3}{8}
Ике якны 2-га бүлегез.
x=\frac{3}{4},y=-\frac{3}{8}
Система хәзер чишелгән.