\left\{ \begin{array} { l } { 4 x + y = 9 } \\ { 2 x + y = 7 } \end{array} \right.
x, y өчен чишелеш
x=1
y=5
Граф
Уртаклык
Клип тактага күчереп
4x+y=9,2x+y=7
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
4x+y=9
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
4x=-y+9
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{4}\left(-y+9\right)
Ике якны 4-га бүлегез.
x=-\frac{1}{4}y+\frac{9}{4}
\frac{1}{4}'ны -y+9 тапкыр тапкырлагыз.
2\left(-\frac{1}{4}y+\frac{9}{4}\right)+y=7
Башка тигезләмәдә x урынына \frac{-y+9}{4} куегыз, 2x+y=7.
-\frac{1}{2}y+\frac{9}{2}+y=7
2'ны \frac{-y+9}{4} тапкыр тапкырлагыз.
\frac{1}{2}y+\frac{9}{2}=7
-\frac{y}{2}'ны y'га өстәгез.
\frac{1}{2}y=\frac{5}{2}
Тигезләмәнең ике ягыннан \frac{9}{2} алыгыз.
y=5
Ике якны 2-га тапкырлагыз.
x=-\frac{1}{4}\times 5+\frac{9}{4}
5'ны y өчен x=-\frac{1}{4}y+\frac{9}{4}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-5+9}{4}
-\frac{1}{4}'ны 5 тапкыр тапкырлагыз.
x=1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{9}{4}'ны -\frac{5}{4}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=1,y=5
Система хәзер чишелгән.
4x+y=9,2x+y=7
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}4&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}4&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
\left(\begin{matrix}4&1\\2&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-1&2\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9-\frac{1}{2}\times 7\\-9+2\times 7\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=5
x һәм y матрица элементларын чыгартыгыз.
4x+y=9,2x+y=7
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4x-2x+y-y=9-7
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x+y=7'ны 4x+y=9'нан алыгыз.
4x-2x=9-7
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
2x=9-7
4x'ны -2x'га өстәгез.
2x=2
9'ны -7'га өстәгез.
x=1
Ике якны 2-га бүлегез.
2+y=7
1'ны x өчен 2x+y=7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=5
Тигезләмәнең ике ягыннан 2 алыгыз.
x=1,y=5
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}