Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x-2y=1,x+y=12
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x-2y=1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x=2y+1
Тигезләмәнең ике ягына 2y өстәгез.
x=\frac{1}{3}\left(2y+1\right)
Ике якны 3-га бүлегез.
x=\frac{2}{3}y+\frac{1}{3}
\frac{1}{3}'ны 2y+1 тапкыр тапкырлагыз.
\frac{2}{3}y+\frac{1}{3}+y=12
Башка тигезләмәдә x урынына \frac{2y+1}{3} куегыз, x+y=12.
\frac{5}{3}y+\frac{1}{3}=12
\frac{2y}{3}'ны y'га өстәгез.
\frac{5}{3}y=\frac{35}{3}
Тигезләмәнең ике ягыннан \frac{1}{3} алыгыз.
y=7
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{5}{3} тигезләмәнең ике ягын да бүлегез.
x=\frac{2}{3}\times 7+\frac{1}{3}
7'ны y өчен x=\frac{2}{3}y+\frac{1}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{14+1}{3}
\frac{2}{3}'ны 7 тапкыр тапкырлагыз.
x=5
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{1}{3}'ны \frac{14}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=5,y=7
Система хәзер чишелгән.
3x-2y=1,x+y=12
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\12\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\12\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}1\\12\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{2}{5}\times 12\\-\frac{1}{5}+\frac{3}{5}\times 12\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=5,y=7
x һәм y матрица элементларын чыгартыгыз.
3x-2y=1,x+y=12
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x-2y=1,3x+3y=3\times 12
3x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 3'га тапкырлагыз.
3x-2y=1,3x+3y=36
Гадиләштерегез.
3x-3x-2y-3y=1-36
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x+3y=36'ны 3x-2y=1'нан алыгыз.
-2y-3y=1-36
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
-5y=1-36
-2y'ны -3y'га өстәгез.
-5y=-35
1'ны -36'га өстәгез.
y=7
Ике якны -5-га бүлегез.
x+7=12
7'ны y өчен x+y=12'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=5
Тигезләмәнең ике ягыннан 7 алыгыз.
x=5,y=7
Система хәзер чишелгән.