Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x+2y-7=0,x-5y+9=0
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x+2y-7=0
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x+2y=7
Тигезләмәнең ике ягына 7 өстәгез.
3x=-2y+7
Тигезләмәнең ике ягыннан 2y алыгыз.
x=\frac{1}{3}\left(-2y+7\right)
Ике якны 3-га бүлегез.
x=-\frac{2}{3}y+\frac{7}{3}
\frac{1}{3}'ны -2y+7 тапкыр тапкырлагыз.
-\frac{2}{3}y+\frac{7}{3}-5y+9=0
Башка тигезләмәдә x урынына \frac{-2y+7}{3} куегыз, x-5y+9=0.
-\frac{17}{3}y+\frac{7}{3}+9=0
-\frac{2y}{3}'ны -5y'га өстәгез.
-\frac{17}{3}y+\frac{34}{3}=0
\frac{7}{3}'ны 9'га өстәгез.
-\frac{17}{3}y=-\frac{34}{3}
Тигезләмәнең ике ягыннан \frac{34}{3} алыгыз.
y=2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{17}{3} тигезләмәнең ике ягын да бүлегез.
x=-\frac{2}{3}\times 2+\frac{7}{3}
2'ны y өчен x=-\frac{2}{3}y+\frac{7}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-4+7}{3}
-\frac{2}{3}'ны 2 тапкыр тапкырлагыз.
x=1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{7}{3}'ны -\frac{4}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=1,y=2
Система хәзер чишелгән.
3x+2y-7=0,x-5y+9=0
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-9\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{2}{3\left(-5\right)-2}\\-\frac{1}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{2}{17}\\\frac{1}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\times 7+\frac{2}{17}\left(-9\right)\\\frac{1}{17}\times 7-\frac{3}{17}\left(-9\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=2
x һәм y матрица элементларын чыгартыгыз.
3x+2y-7=0,x-5y+9=0
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+2y-7=0,3x+3\left(-5\right)y+3\times 9=0
3x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 3'га тапкырлагыз.
3x+2y-7=0,3x-15y+27=0
Гадиләштерегез.
3x-3x+2y+15y-7-27=0
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x-15y+27=0'ны 3x+2y-7=0'нан алыгыз.
2y+15y-7-27=0
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
17y-7-27=0
2y'ны 15y'га өстәгез.
17y-34=0
-7'ны -27'га өстәгез.
17y=34
Тигезләмәнең ике ягына 34 өстәгез.
y=2
Ике якны 17-га бүлегез.
x-5\times 2+9=0
2'ны y өчен x-5y+9=0'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x-10+9=0
-5'ны 2 тапкыр тапкырлагыз.
x-1=0
-10'ны 9'га өстәгез.
x=1
Тигезләмәнең ике ягына 1 өстәгез.
x=1,y=2
Система хәзер чишелгән.