Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x-y=4,3x-5y=15
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x-y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=y+4
Тигезләмәнең ике ягына y өстәгез.
x=\frac{1}{2}\left(y+4\right)
Ике якны 2-га бүлегез.
x=\frac{1}{2}y+2
\frac{1}{2}'ны y+4 тапкыр тапкырлагыз.
3\left(\frac{1}{2}y+2\right)-5y=15
Башка тигезләмәдә x урынына \frac{y}{2}+2 куегыз, 3x-5y=15.
\frac{3}{2}y+6-5y=15
3'ны \frac{y}{2}+2 тапкыр тапкырлагыз.
-\frac{7}{2}y+6=15
\frac{3y}{2}'ны -5y'га өстәгез.
-\frac{7}{2}y=9
Тигезләмәнең ике ягыннан 6 алыгыз.
y=-\frac{18}{7}
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{7}{2} тигезләмәнең ике ягын да бүлегез.
x=\frac{1}{2}\left(-\frac{18}{7}\right)+2
-\frac{18}{7}'ны y өчен x=\frac{1}{2}y+2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{9}{7}+2
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, \frac{1}{2}'ны -\frac{18}{7} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{5}{7}
2'ны -\frac{9}{7}'га өстәгез.
x=\frac{5}{7},y=-\frac{18}{7}
Система хәзер чишелгән.
2x-y=4,3x-5y=15
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\15\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-\left(-3\right)}&-\frac{-1}{2\left(-5\right)-\left(-3\right)}\\-\frac{3}{2\left(-5\right)-\left(-3\right)}&\frac{2}{2\left(-5\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&-\frac{1}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 4-\frac{1}{7}\times 15\\\frac{3}{7}\times 4-\frac{2}{7}\times 15\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\\-\frac{18}{7}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{5}{7},y=-\frac{18}{7}
x һәм y матрица элементларын чыгартыгыз.
2x-y=4,3x-5y=15
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 2x+3\left(-1\right)y=3\times 4,2\times 3x+2\left(-5\right)y=2\times 15
2x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
6x-3y=12,6x-10y=30
Гадиләштерегез.
6x-6x-3y+10y=12-30
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x-10y=30'ны 6x-3y=12'нан алыгыз.
-3y+10y=12-30
6x'ны -6x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 6x һәм -6x шартлар кыскартылган.
7y=12-30
-3y'ны 10y'га өстәгез.
7y=-18
12'ны -30'га өстәгез.
y=-\frac{18}{7}
Ике якны 7-га бүлегез.
3x-5\left(-\frac{18}{7}\right)=15
-\frac{18}{7}'ны y өчен 3x-5y=15'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x+\frac{90}{7}=15
-5'ны -\frac{18}{7} тапкыр тапкырлагыз.
3x=\frac{15}{7}
Тигезләмәнең ике ягыннан \frac{90}{7} алыгыз.
x=\frac{5}{7}
Ике якны 3-га бүлегез.
x=\frac{5}{7},y=-\frac{18}{7}
Система хәзер чишелгән.