Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+y=3,x-y=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+y=3
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-y+3
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{2}\left(-y+3\right)
Ике якны 2-га бүлегез.
x=-\frac{1}{2}y+\frac{3}{2}
\frac{1}{2}'ны -y+3 тапкыр тапкырлагыз.
-\frac{1}{2}y+\frac{3}{2}-y=1
Башка тигезләмәдә x урынына \frac{-y+3}{2} куегыз, x-y=1.
-\frac{3}{2}y+\frac{3}{2}=1
-\frac{y}{2}'ны -y'га өстәгез.
-\frac{3}{2}y=-\frac{1}{2}
Тигезләмәнең ике ягыннан \frac{3}{2} алыгыз.
y=\frac{1}{3}
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{3}{2} тигезләмәнең ике ягын да бүлегез.
x=-\frac{1}{2}\times \frac{1}{3}+\frac{3}{2}
\frac{1}{3}'ны y өчен x=-\frac{1}{2}y+\frac{3}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{1}{6}+\frac{3}{2}
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, -\frac{1}{2}'ны \frac{1}{3} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{4}{3}
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{3}{2}'ны -\frac{1}{6}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{4}{3},y=\frac{1}{3}
Система хәзер чишелгән.
2x+y=3,x-y=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}3\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3+\frac{1}{3}\\\frac{1}{3}\times 3-\frac{2}{3}\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\\frac{1}{3}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{4}{3},y=\frac{1}{3}
x һәм y матрица элементларын чыгартыгыз.
2x+y=3,x-y=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x+y=3,2x+2\left(-1\right)y=2
2x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
2x+y=3,2x-2y=2
Гадиләштерегез.
2x-2x+y+2y=3-2
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x-2y=2'ны 2x+y=3'нан алыгыз.
y+2y=3-2
2x'ны -2x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 2x һәм -2x шартлар кыскартылган.
3y=3-2
y'ны 2y'га өстәгез.
3y=1
3'ны -2'га өстәгез.
y=\frac{1}{3}
Ике якны 3-га бүлегез.
x-\frac{1}{3}=1
\frac{1}{3}'ны y өчен x-y=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{4}{3}
Тигезләмәнең ике ягына \frac{1}{3} өстәгез.
x=\frac{4}{3},y=\frac{1}{3}
Система хәзер чишелгән.