\left\{ \begin{array} { l } { 2 x + y = - 2 } \\ { 4 x + 5 y = 8 } \end{array} \right.
x, y өчен чишелеш
x=-3
y=4
Граф
Уртаклык
Клип тактага күчереп
2x+y=-2,4x+5y=8
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+y=-2
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-y-2
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{2}\left(-y-2\right)
Ике якны 2-га бүлегез.
x=-\frac{1}{2}y-1
\frac{1}{2}'ны -y-2 тапкыр тапкырлагыз.
4\left(-\frac{1}{2}y-1\right)+5y=8
Башка тигезләмәдә x урынына -\frac{y}{2}-1 куегыз, 4x+5y=8.
-2y-4+5y=8
4'ны -\frac{y}{2}-1 тапкыр тапкырлагыз.
3y-4=8
-2y'ны 5y'га өстәгез.
3y=12
Тигезләмәнең ике ягына 4 өстәгез.
y=4
Ике якны 3-га бүлегез.
x=-\frac{1}{2}\times 4-1
4'ны y өчен x=-\frac{1}{2}y-1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-2-1
-\frac{1}{2}'ны 4 тапкыр тапкырлагыз.
x=-3
-1'ны -2'га өстәгез.
x=-3,y=4
Система хәзер чишелгән.
2x+y=-2,4x+5y=8
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
\left(\begin{matrix}2&1\\4&5\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-4}&-\frac{1}{2\times 5-4}\\-\frac{4}{2\times 5-4}&\frac{2}{2\times 5-4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{1}{6}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-2\right)-\frac{1}{6}\times 8\\-\frac{2}{3}\left(-2\right)+\frac{1}{3}\times 8\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-3,y=4
x һәм y матрица элементларын чыгартыгыз.
2x+y=-2,4x+5y=8
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4\times 2x+4y=4\left(-2\right),2\times 4x+2\times 5y=2\times 8
2x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
8x+4y=-8,8x+10y=16
Гадиләштерегез.
8x-8x+4y-10y=-8-16
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 8x+10y=16'ны 8x+4y=-8'нан алыгыз.
4y-10y=-8-16
8x'ны -8x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 8x һәм -8x шартлар кыскартылган.
-6y=-8-16
4y'ны -10y'га өстәгез.
-6y=-24
-8'ны -16'га өстәгез.
y=4
Ике якны -6-га бүлегез.
4x+5\times 4=8
4'ны y өчен 4x+5y=8'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x+20=8
5'ны 4 тапкыр тапкырлагыз.
4x=-12
Тигезләмәнең ике ягыннан 20 алыгыз.
x=-3
Ике якны 4-га бүлегез.
x=-3,y=4
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}