Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+y=-1,3x+y=0
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+y=-1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-y-1
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{2}\left(-y-1\right)
Ике якны 2-га бүлегез.
x=-\frac{1}{2}y-\frac{1}{2}
\frac{1}{2}'ны -y-1 тапкыр тапкырлагыз.
3\left(-\frac{1}{2}y-\frac{1}{2}\right)+y=0
Башка тигезләмәдә x урынына \frac{-y-1}{2} куегыз, 3x+y=0.
-\frac{3}{2}y-\frac{3}{2}+y=0
3'ны \frac{-y-1}{2} тапкыр тапкырлагыз.
-\frac{1}{2}y-\frac{3}{2}=0
-\frac{3y}{2}'ны y'га өстәгез.
-\frac{1}{2}y=\frac{3}{2}
Тигезләмәнең ике ягына \frac{3}{2} өстәгез.
y=-3
Ике якны -2-га тапкырлагыз.
x=-\frac{1}{2}\left(-3\right)-\frac{1}{2}
-3'ны y өчен x=-\frac{1}{2}y-\frac{1}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{3-1}{2}
-\frac{1}{2}'ны -3 тапкыр тапкырлагыз.
x=1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, -\frac{1}{2}'ны \frac{3}{2}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=1,y=-3
Система хәзер чишелгән.
2x+y=-1,3x+y=0
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\0\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
\left(\begin{matrix}2&1\\3&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3}&-\frac{1}{2-3}\\-\frac{3}{2-3}&\frac{2}{2-3}\end{matrix}\right)\left(\begin{matrix}-1\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}-1\\0\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-1\right)\\3\left(-1\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=-3
x һәм y матрица элементларын чыгартыгыз.
2x+y=-1,3x+y=0
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x-3x+y-y=-1
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x+y=0'ны 2x+y=-1'нан алыгыз.
2x-3x=-1
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
-x=-1
2x'ны -3x'га өстәгез.
x=1
Ике якны -1-га бүлегез.
3+y=0
1'ны x өчен 3x+y=0'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-3
Тигезләмәнең ике ягыннан 3 алыгыз.
x=1,y=-3
Система хәзер чишелгән.