\left\{ \begin{array} { l } { 2 x + 3 y = 6 } \\ { - 4 x + 3 y = 12 } \end{array} \right.
x, y өчен чишелеш
x=-1
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Граф
Уртаклык
Клип тактага күчереп
2x+3y=6,-4x+3y=12
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+3y=6
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-3y+6
Тигезләмәнең ике ягыннан 3y алыгыз.
x=\frac{1}{2}\left(-3y+6\right)
Ике якны 2-га бүлегез.
x=-\frac{3}{2}y+3
\frac{1}{2}'ны -3y+6 тапкыр тапкырлагыз.
-4\left(-\frac{3}{2}y+3\right)+3y=12
Башка тигезләмәдә x урынына -\frac{3y}{2}+3 куегыз, -4x+3y=12.
6y-12+3y=12
-4'ны -\frac{3y}{2}+3 тапкыр тапкырлагыз.
9y-12=12
6y'ны 3y'га өстәгез.
9y=24
Тигезләмәнең ике ягына 12 өстәгез.
y=\frac{8}{3}
Ике якны 9-га бүлегез.
x=-\frac{3}{2}\times \frac{8}{3}+3
\frac{8}{3}'ны y өчен x=-\frac{3}{2}y+3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-4+3
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, -\frac{3}{2}'ны \frac{8}{3} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=-1
3'ны -4'га өстәгез.
x=-1,y=\frac{8}{3}
Система хәзер чишелгән.
2x+3y=6,-4x+3y=12
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&3\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}2&3\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
\left(\begin{matrix}2&3\\-4&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\left(-4\right)}&-\frac{3}{2\times 3-3\left(-4\right)}\\-\frac{-4}{2\times 3-3\left(-4\right)}&\frac{2}{2\times 3-3\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 6-\frac{1}{6}\times 12\\\frac{2}{9}\times 6+\frac{1}{9}\times 12\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{8}{3}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-1,y=\frac{8}{3}
x һәм y матрица элементларын чыгартыгыз.
2x+3y=6,-4x+3y=12
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x+4x+3y-3y=6-12
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -4x+3y=12'ны 2x+3y=6'нан алыгыз.
2x+4x=6-12
3y'ны -3y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3y һәм -3y шартлар кыскартылган.
6x=6-12
2x'ны 4x'га өстәгез.
6x=-6
6'ны -12'га өстәгез.
x=-1
Ике якны 6-га бүлегез.
-4\left(-1\right)+3y=12
-1'ны x өчен -4x+3y=12'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
4+3y=12
-4'ны -1 тапкыр тапкырлагыз.
3y=8
Тигезләмәнең ике ягыннан 4 алыгыз.
y=\frac{8}{3}
Ике якны 3-га бүлегез.
x=-1,y=\frac{8}{3}
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}