\left\{ \begin{array} { l } { - 3 x + 5 y = 1 } \\ { 4 x - y = 10 } \end{array} \right.
x, y өчен чишелеш
x=3
y=2
Граф
Уртаклык
Клип тактага күчереп
-3x+5y=1,4x-y=10
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
-3x+5y=1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
-3x=-5y+1
Тигезләмәнең ике ягыннан 5y алыгыз.
x=-\frac{1}{3}\left(-5y+1\right)
Ике якны -3-га бүлегез.
x=\frac{5}{3}y-\frac{1}{3}
-\frac{1}{3}'ны -5y+1 тапкыр тапкырлагыз.
4\left(\frac{5}{3}y-\frac{1}{3}\right)-y=10
Башка тигезләмәдә x урынына \frac{5y-1}{3} куегыз, 4x-y=10.
\frac{20}{3}y-\frac{4}{3}-y=10
4'ны \frac{5y-1}{3} тапкыр тапкырлагыз.
\frac{17}{3}y-\frac{4}{3}=10
\frac{20y}{3}'ны -y'га өстәгез.
\frac{17}{3}y=\frac{34}{3}
Тигезләмәнең ике ягына \frac{4}{3} өстәгез.
y=2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{17}{3} тигезләмәнең ике ягын да бүлегез.
x=\frac{5}{3}\times 2-\frac{1}{3}
2'ны y өчен x=\frac{5}{3}y-\frac{1}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{10-1}{3}
\frac{5}{3}'ны 2 тапкыр тапкырлагыз.
x=3
Гомуми ваклаучыны табып һәм санаучыларны өстәп, -\frac{1}{3}'ны \frac{10}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=3,y=2
Система хәзер чишелгән.
-3x+5y=1,4x-y=10
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\10\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\4&-1\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-5\times 4}&-\frac{5}{-3\left(-1\right)-5\times 4}\\-\frac{4}{-3\left(-1\right)-5\times 4}&-\frac{3}{-3\left(-1\right)-5\times 4}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{5}{17}\\\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}+\frac{5}{17}\times 10\\\frac{4}{17}+\frac{3}{17}\times 10\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=3,y=2
x һәм y матрица элементларын чыгартыгыз.
-3x+5y=1,4x-y=10
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4\left(-3\right)x+4\times 5y=4,-3\times 4x-3\left(-1\right)y=-3\times 10
-3x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны -3'га тапкырлагыз.
-12x+20y=4,-12x+3y=-30
Гадиләштерегез.
-12x+12x+20y-3y=4+30
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -12x+3y=-30'ны -12x+20y=4'нан алыгыз.
20y-3y=4+30
-12x'ны 12x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -12x һәм 12x шартлар кыскартылган.
17y=4+30
20y'ны -3y'га өстәгез.
17y=34
4'ны 30'га өстәгез.
y=2
Ике якны 17-га бүлегез.
4x-2=10
2'ны y өчен 4x-y=10'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x=12
Тигезләмәнең ике ягына 2 өстәгез.
x=3
Ике якны 4-га бүлегез.
x=3,y=2
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}