Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=5,-3x+y=-3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+5
Тигезләмәнең ике ягыннан y алыгыз.
-3\left(-y+5\right)+y=-3
Башка тигезләмәдә x урынына -y+5 куегыз, -3x+y=-3.
3y-15+y=-3
-3'ны -y+5 тапкыр тапкырлагыз.
4y-15=-3
3y'ны y'га өстәгез.
4y=12
Тигезләмәнең ике ягына 15 өстәгез.
y=3
Ике якны 4-га бүлегез.
x=-3+5
3'ны y өчен x=-y+5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=2
5'ны -3'га өстәгез.
x=2,y=3
Система хәзер чишелгән.
x+y=5,-3x+y=-3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{4}\left(-3\right)\\\frac{3}{4}\times 5+\frac{1}{4}\left(-3\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=2,y=3
x һәм y матрица элементларын чыгартыгыз.
x+y=5,-3x+y=-3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x+3x+y-y=5+3
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -3x+y=-3'ны x+y=5'нан алыгыз.
x+3x=5+3
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
4x=5+3
x'ны 3x'га өстәгез.
4x=8
5'ны 3'га өстәгез.
x=2
Ике якны 4-га бүлегез.
-3\times 2+y=-3
2'ны x өчен -3x+y=-3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
-6+y=-3
-3'ны 2 тапкыр тапкырлагыз.
y=3
Тигезләмәнең ике ягына 6 өстәгез.
x=2,y=3
Система хәзер чишелгән.