Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+4y=12,2x-y=6
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+4y=12
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-4y+12
Тигезләмәнең ике ягыннан 4y алыгыз.
2\left(-4y+12\right)-y=6
Башка тигезләмәдә x урынына -4y+12 куегыз, 2x-y=6.
-8y+24-y=6
2'ны -4y+12 тапкыр тапкырлагыз.
-9y+24=6
-8y'ны -y'га өстәгез.
-9y=-18
Тигезләмәнең ике ягыннан 24 алыгыз.
y=2
Ике якны -9-га бүлегез.
x=-4\times 2+12
2'ны y өчен x=-4y+12'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-8+12
-4'ны 2 тапкыр тапкырлагыз.
x=4
12'ны -8'га өстәгез.
x=4,y=2
Система хәзер чишелгән.
x+4y=12,2x-y=6
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&4\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}1&4\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
\left(\begin{matrix}1&4\\2&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-4\times 2}&-\frac{4}{-1-4\times 2}\\-\frac{2}{-1-4\times 2}&\frac{1}{-1-4\times 2}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{4}{9}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 12+\frac{4}{9}\times 6\\\frac{2}{9}\times 12-\frac{1}{9}\times 6\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=4,y=2
x һәм y матрица элементларын чыгартыгыз.
x+4y=12,2x-y=6
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x+2\times 4y=2\times 12,2x-y=6
x һәм 2x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 2'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
2x+8y=24,2x-y=6
Гадиләштерегез.
2x-2x+8y+y=24-6
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x-y=6'ны 2x+8y=24'нан алыгыз.
8y+y=24-6
2x'ны -2x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 2x һәм -2x шартлар кыскартылган.
9y=24-6
8y'ны y'га өстәгез.
9y=18
24'ны -6'га өстәгез.
y=2
Ике якны 9-га бүлегез.
2x-2=6
2'ны y өчен 2x-y=6'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
2x=8
Тигезләмәнең ике ягына 2 өстәгез.
x=4
Ике якны 2-га бүлегез.
x=4,y=2
Система хәзер чишелгән.