Төп эчтәлеккә скип
Исәпләгез
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\int 2x+2-1-2x^{2}-2x^{2}+x\mathrm{d}x
Башта билгесез интегралны исәпләгез.
\int 2x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Сумманы буын артыннан буын интеграцияләгез.
2\int x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Һәр буыннан константаны чыгартыгыз.
x^{2}+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x\mathrm{d}x \frac{x^{2}}{2} белән алыштырыгыз. 2'ны \frac{x^{2}}{2} тапкыр тапкырлагыз.
x^{2}+2x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Гомуми интеграллар кагыйдаләре таблицасын \int a\mathrm{d}x=ax кулланып, 2’ның интегралын табыгыз.
x^{2}+2x-x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Гомуми интеграллар кагыйдаләре таблицасын \int a\mathrm{d}x=ax кулланып, -1’ның интегралын табыгыз.
x^{2}+2x-x-\frac{2x^{3}}{3}-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{2}\mathrm{d}x \frac{x^{3}}{3} белән алыштырыгыз. -2'ны \frac{x^{3}}{3} тапкыр тапкырлагыз.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{2}\mathrm{d}x \frac{x^{3}}{3} белән алыштырыгыз. -2'ны \frac{x^{3}}{3} тапкыр тапкырлагыз.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\frac{x^{2}}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x\mathrm{d}x \frac{x^{2}}{2} белән алыштырыгыз.
\frac{3x^{2}}{2}+x-\frac{4x^{3}}{3}
Гадиләштерегез.
\frac{3}{2}\times 1^{2}+1-\frac{4}{3}\times 1^{3}-\left(\frac{3}{2}\times 0^{2}+0-\frac{4}{3}\times 0^{3}\right)
Төгәл интеграл — интеграцияләүнең өске чигендә исәпләнгән күпбуынның беренчесе минус интеграцияләүнең аскы чигендә исәпләнгән күпбуынның беренчесе.
\frac{7}{6}
Гадиләштерегез.