Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
x аерыгыз
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
\left(x+5\right)^{3}не җәю өчен, \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} бинома теоремасын кулланыгыз.
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
x x^{3}+15x^{2}+75x+125'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
Сумманы буын артыннан буын интеграцияләгез.
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Һәр буыннан константаны чыгартыгыз.
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{4}\mathrm{d}x \frac{x^{5}}{5} белән алыштырыгыз.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{3}\mathrm{d}x \frac{x^{4}}{4} белән алыштырыгыз. 15'ны \frac{x^{4}}{4} тапкыр тапкырлагыз.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{2}\mathrm{d}x \frac{x^{3}}{3} белән алыштырыгыз. 75'ны \frac{x^{3}}{3} тапкыр тапкырлагыз.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x\mathrm{d}x \frac{x^{2}}{2} белән алыштырыгыз. 125'ны \frac{x^{2}}{2} тапкыр тапкырлагыз.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
Гадиләштерегез.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
F\left(x\right) f\left(x\right)’ның беренчесе булса,барлык беренчеләрнең күпчелеге f\left(x\right) F\left(x\right)+C буларак исәпләнә. Шуңа була, C\in \mathrm{R} интеграцияләү константасын нәтиҗәгә кушыгыз.