Төп эчтәлеккә скип
Исәпләгез
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\int _{-0.15}^{665}-x^{2}+2x+1-\frac{1}{2}x\mathrm{d}x
-1+\frac{1}{2}x-ның капма-каршысын табу өчен, һәрбер әгъзага капма-каршысын табыгыз.
\int _{-0.15}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
\frac{3}{2}x алу өчен, 2x һәм -\frac{1}{2}x берләштерегз.
\int -x^{2}+\frac{3x}{2}+1\mathrm{d}x
Башта билгесез интегралны исәпләгез.
\int -x^{2}\mathrm{d}x+\int \frac{3x}{2}\mathrm{d}x+\int 1\mathrm{d}x
Сумманы буын артыннан буын интеграцияләгез.
-\int x^{2}\mathrm{d}x+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Һәр буыннан константаны чыгартыгыз.
-\frac{x^{3}}{3}+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{2}\mathrm{d}x \frac{x^{3}}{3} белән алыштырыгыз. -1'ны \frac{x^{3}}{3} тапкыр тапкырлагыз.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+\int 1\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x\mathrm{d}x \frac{x^{2}}{2} белән алыштырыгыз. \frac{3}{2}'ны \frac{x^{2}}{2} тапкыр тапкырлагыз.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+x
Гомуми интеграллар кагыйдаләре таблицасын \int a\mathrm{d}x=ax кулланып, 1’ның интегралын табыгыз.
-\frac{665^{3}}{3}+\frac{3}{4}\times 665^{2}+665-\left(-\frac{\left(-0.15\right)^{3}}{3}+\frac{3}{4}\left(-0.15\right)^{2}-0.15\right)
Төгәл интеграл — интеграцияләүнең өске чигендә исәпләнгән күпбуынның беренчесе минус интеграцияләүнең аскы чигендә исәпләнгән күпбуынның беренчесе.
-\frac{146541311677}{1500}
Гадиләштерегез.