Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
x аерыгыз
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\int 2x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -\frac{1}{x}\mathrm{d}x
Сумманы буын артыннан буын интеграцияләгез.
2\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Һәр буыннан константаны чыгартыгыз.
\frac{2x^{3}}{3}+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{2}\mathrm{d}x \frac{x^{3}}{3} белән алыштырыгыз. 2'ны \frac{x^{3}}{3} тапкыр тапкырлагыз.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\int \frac{1}{x}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x\mathrm{d}x \frac{x^{2}}{2} белән алыштырыгыз. 3'ны \frac{x^{2}}{2} тапкыр тапкырлагыз.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)
Нәтиҗәне алу өчен, гомуми интеграллар таблицасыннан \int \frac{1}{x}\mathrm{d}x=\ln(|x|) кулланыгыз.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)+С
F\left(x\right) f\left(x\right)’ның беренчесе булса,барлык беренчеләрнең күпчелеге f\left(x\right) F\left(x\right)+C буларак исәпләнә. Шуңа була, C\in \mathrm{R} интеграцияләү константасын нәтиҗәгә кушыгыз.