Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
x аерыгыз
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\int 7x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 4x^{5}\mathrm{d}x
Сумманы буын артыннан буын интеграцияләгез.
7\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
Һәр буыннан константаны чыгартыгыз.
\frac{7x^{3}}{3}-3\int x^{3}\mathrm{d}x+4\int x^{5}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{2}\mathrm{d}x \frac{x^{3}}{3} белән алыштырыгыз. 7'ны \frac{x^{3}}{3} тапкыр тапкырлагыз.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+4\int x^{5}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{3}\mathrm{d}x \frac{x^{4}}{4} белән алыштырыгыз. -3'ны \frac{x^{4}}{4} тапкыр тапкырлагыз.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 өчен булгач, \int x^{5}\mathrm{d}x \frac{x^{6}}{6} белән алыштырыгыз. 4'ны \frac{x^{6}}{6} тапкыр тапкырлагыз.
\frac{7x^{3}}{3}-\frac{3x^{4}}{4}+\frac{2x^{6}}{3}+С
F\left(x\right) f\left(x\right)’ның беренчесе булса,барлык беренчеләрнең күпчелеге f\left(x\right) F\left(x\right)+C буларак исәпләнә. Шуңа була, C\in \mathrm{R} интеграцияләү константасын нәтиҗәгә кушыгыз.