Исәпләгез
\frac{\left(x-3\right)\left(x+4\right)\left(x^{2}-1\right)}{12}
Җәегез
\frac{x^{4}}{12}+\frac{x^{3}}{12}-\frac{13x^{2}}{12}-\frac{x}{12}+1
Граф
Уртаклык
Клип тактага күчереп
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
\frac{1}{12} x+4'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
\frac{4}{12} алу өчен, \frac{1}{12} һәм 4 тапкырлагыз.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
4 чыгартып һәм ташлап, \frac{4}{12} өлешен иң түбән буыннарга кадәр киметү.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Һәрбер \frac{1}{12}x+\frac{1}{3} терминын һәрбер x+1-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
x^{2} алу өчен, x һәм x тапкырлагыз.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
\frac{5}{12}x алу өчен, \frac{1}{12}x һәм \frac{1}{3}x берләштерегз.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Һәрбер \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} терминын һәрбер x-1-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
x^{2} алу өчен, x һәм x тапкырлагыз.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
-\frac{1}{12} алу өчен, \frac{1}{12} һәм -1 тапкырлагыз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
\frac{1}{3}x^{2} алу өчен, -\frac{1}{12}x^{2} һәм \frac{5}{12}x^{2} берләштерегз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
-\frac{5}{12} алу өчен, \frac{5}{12} һәм -1 тапкырлагыз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
-\frac{1}{12}x алу өчен, -\frac{5}{12}x һәм \frac{1}{3}x берләштерегз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
-\frac{1}{3} алу өчен, \frac{1}{3} һәм -1 тапкырлагыз.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Һәрбер \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} терминын һәрбер x-3-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 4 алу өчен, 3 һәм 1 өстәгез.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
x^{2} алу өчен, x һәм x тапкырлагыз.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
\frac{-3}{12} алу өчен, \frac{1}{12} һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
3 чыгартып һәм ташлап, \frac{-3}{12} өлешен иң түбән буыннарга кадәр киметү.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
\frac{1}{12}x^{3} алу өчен, -\frac{1}{4}x^{3} һәм \frac{1}{3}x^{3} берләштерегз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
\frac{-3}{3} алу өчен, \frac{1}{3} һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
-1 алу өчен, -3 3'га бүлегез.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
-\frac{13}{12}x^{2} алу өчен, -x^{2} һәм -\frac{1}{12}x^{2} берләштерегз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
-\frac{1}{12}\left(-3\right) бер вакланма буларак чагылдыру.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
3 алу өчен, -1 һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
3 чыгартып һәм ташлап, \frac{3}{12} өлешен иң түбән буыннарга кадәр киметү.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
-\frac{1}{12}x алу өчен, \frac{1}{4}x һәм -\frac{1}{3}x берләштерегз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
-\frac{1}{3}\left(-3\right) бер вакланма буларак чагылдыру.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
3 алу өчен, -1 һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
1 алу өчен, 3 3'га бүлегез.
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
\frac{1}{12} x+4'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
\frac{4}{12} алу өчен, \frac{1}{12} һәм 4 тапкырлагыз.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
4 чыгартып һәм ташлап, \frac{4}{12} өлешен иң түбән буыннарга кадәр киметү.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Һәрбер \frac{1}{12}x+\frac{1}{3} терминын һәрбер x+1-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
x^{2} алу өчен, x һәм x тапкырлагыз.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
\frac{5}{12}x алу өчен, \frac{1}{12}x һәм \frac{1}{3}x берләштерегз.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Һәрбер \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} терминын һәрбер x-1-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
x^{2} алу өчен, x һәм x тапкырлагыз.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
-\frac{1}{12} алу өчен, \frac{1}{12} һәм -1 тапкырлагыз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
\frac{1}{3}x^{2} алу өчен, -\frac{1}{12}x^{2} һәм \frac{5}{12}x^{2} берләштерегз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
-\frac{5}{12} алу өчен, \frac{5}{12} һәм -1 тапкырлагыз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
-\frac{1}{12}x алу өчен, -\frac{5}{12}x һәм \frac{1}{3}x берләштерегз.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
-\frac{1}{3} алу өчен, \frac{1}{3} һәм -1 тапкырлагыз.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Һәрбер \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} терминын һәрбер x-3-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 4 алу өчен, 3 һәм 1 өстәгез.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
x^{2} алу өчен, x һәм x тапкырлагыз.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
\frac{-3}{12} алу өчен, \frac{1}{12} һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
3 чыгартып һәм ташлап, \frac{-3}{12} өлешен иң түбән буыннарга кадәр киметү.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
\frac{1}{12}x^{3} алу өчен, -\frac{1}{4}x^{3} һәм \frac{1}{3}x^{3} берләштерегз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
\frac{-3}{3} алу өчен, \frac{1}{3} һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
-1 алу өчен, -3 3'га бүлегез.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
-\frac{13}{12}x^{2} алу өчен, -x^{2} һәм -\frac{1}{12}x^{2} берләштерегз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
-\frac{1}{12}\left(-3\right) бер вакланма буларак чагылдыру.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
3 алу өчен, -1 һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
3 чыгартып һәм ташлап, \frac{3}{12} өлешен иң түбән буыннарга кадәр киметү.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
-\frac{1}{12}x алу өчен, \frac{1}{4}x һәм -\frac{1}{3}x берләштерегз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
-\frac{1}{3}\left(-3\right) бер вакланма буларак чагылдыру.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
3 алу өчен, -1 һәм -3 тапкырлагыз.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
1 алу өчен, 3 3'га бүлегез.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}