Исәпләгез
-36+\frac{1}{4n}+\frac{3}{2n^{2}}
Җәегез
-36+\frac{1}{4n}+\frac{3}{2n^{2}}
Уртаклык
Клип тактага күчереп
\frac{6m+mn}{4mn^{2}}-36
\frac{\frac{6m+mn}{4m}}{n^{2}} бер вакланма буларак чагылдыру.
\frac{m\left(n+6\right)}{4mn^{2}}-36
\frac{6m+mn}{4mn^{2}}-да әлегә хисапка алынмаган аңлатмалар формалары.
\frac{n+6}{4n^{2}}-36
m'дан санаучыда да, ваклаучыда да кыскарту.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 36'ны \frac{4n^{2}}{4n^{2}} тапкыр тапкырлагыз.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
\frac{n+6}{4n^{2}} һәм \frac{36\times 4n^{2}}{4n^{2}} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{n+6-144n^{2}}{4n^{2}}
n+6-36\times 4n^{2}-да тапкырлаулар башкарыгыз.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
\frac{n+6-144n^{2}}{4n^{2}}-да әлегә хисапка алынмаган аңлатмалар формалары.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
4'дан санаучыда да, ваклаучыда да кыскарту.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
-\frac{1}{288}\sqrt{3457}+\frac{1}{288}-ның капма-каршысын табу өчен, һәрбер әгъзага капма-каршысын табыгыз.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
\frac{1}{288}\sqrt{3457}+\frac{1}{288}-ның капма-каршысын табу өчен, һәрбер әгъзага капма-каршысын табыгыз.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
-36 n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}-ны n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
\sqrt{3457} квадрат тамыры — 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
\frac{3457}{2304} алу өчен, \frac{1}{2304} һәм 3457 тапкырлагыз.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
\frac{3}{2} алу өчен, \frac{3457}{2304} \frac{1}{2304}'нан алыгыз.
\frac{6m+mn}{4mn^{2}}-36
\frac{\frac{6m+mn}{4m}}{n^{2}} бер вакланма буларак чагылдыру.
\frac{m\left(n+6\right)}{4mn^{2}}-36
\frac{6m+mn}{4mn^{2}}-да әлегә хисапка алынмаган аңлатмалар формалары.
\frac{n+6}{4n^{2}}-36
m'дан санаучыда да, ваклаучыда да кыскарту.
\frac{n+6}{4n^{2}}-\frac{36\times 4n^{2}}{4n^{2}}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 36'ны \frac{4n^{2}}{4n^{2}} тапкыр тапкырлагыз.
\frac{n+6-36\times 4n^{2}}{4n^{2}}
\frac{n+6}{4n^{2}} һәм \frac{36\times 4n^{2}}{4n^{2}} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{n+6-144n^{2}}{4n^{2}}
n+6-36\times 4n^{2}-да тапкырлаулар башкарыгыз.
\frac{-144\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{4n^{2}}
\frac{n+6-144n^{2}}{4n^{2}}-да әлегә хисапка алынмаган аңлатмалар формалары.
\frac{-36\left(n-\left(-\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
4'дан санаучыда да, ваклаучыда да кыскарту.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\left(\frac{1}{288}\sqrt{3457}+\frac{1}{288}\right)\right)}{n^{2}}
-\frac{1}{288}\sqrt{3457}+\frac{1}{288}-ның капма-каршысын табу өчен, һәрбер әгъзага капма-каршысын табыгыз.
\frac{-36\left(n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
\frac{1}{288}\sqrt{3457}+\frac{1}{288}-ның капма-каршысын табу өчен, һәрбер әгъзага капма-каршысын табыгыз.
\frac{\left(-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}\right)\left(n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}\right)}{n^{2}}
-36 n+\frac{1}{288}\sqrt{3457}-\frac{1}{288}'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\left(\sqrt{3457}\right)^{2}-\frac{1}{2304}}{n^{2}}
-36n-\frac{1}{8}\sqrt{3457}+\frac{1}{8}-ны n-\frac{1}{288}\sqrt{3457}-\frac{1}{288}'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\frac{-36n^{2}+\frac{1}{4}n+\frac{1}{2304}\times 3457-\frac{1}{2304}}{n^{2}}
\sqrt{3457} квадрат тамыры — 3457.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3457}{2304}-\frac{1}{2304}}{n^{2}}
\frac{3457}{2304} алу өчен, \frac{1}{2304} һәм 3457 тапкырлагыз.
\frac{-36n^{2}+\frac{1}{4}n+\frac{3}{2}}{n^{2}}
\frac{3}{2} алу өчен, \frac{3457}{2304} \frac{1}{2304}'нан алыгыз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}