Исәпләгез
-\frac{10\left(6x-7\right)}{3pq}
Җәегез
-\frac{10\left(6x-7\right)}{3pq}
Уртаклык
Клип тактага күчереп
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9p^{2}q}{6y-15}}
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, \frac{98-72x^{2}}{2y-5}'ны \frac{5p}{6x+7} тапкыр тапкырлагыз.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9qp^{2}}{3\left(2y-5\right)}}
\frac{9p^{2}q}{6y-15}-да әлегә хисапка алынмаган аңлатмалар формалары.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{3qp^{2}}{2y-5}}
3'дан санаучыда да, ваклаучыда да кыскарту.
\frac{5p\left(98-72x^{2}\right)\left(2y-5\right)}{\left(6x+7\right)\left(2y-5\right)\times 3qp^{2}}
\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}'ны \frac{3qp^{2}}{2y-5}'ның кире зурлыгына тапкырлап, \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}'ны \frac{3qp^{2}}{2y-5}'га бүлегез.
\frac{5\left(-72x^{2}+98\right)}{3pq\left(6x+7\right)}
p\left(2y-5\right)'дан санаучыда да, ваклаучыда да кыскарту.
\frac{2\times 5\left(-6x-7\right)\left(6x-7\right)}{3pq\left(6x+7\right)}
Әлегә хисапка алынмаган аңлатмалар формалары.
\frac{-2\times 5\left(6x-7\right)\left(6x+7\right)}{3pq\left(6x+7\right)}
-7-6x-дан тискәре санны чыгартыгыз.
\frac{-2\times 5\left(6x-7\right)}{3pq}
6x+7'дан санаучыда да, ваклаучыда да кыскарту.
\frac{-60x+70}{3pq}
Аңлатманы җәю.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9p^{2}q}{6y-15}}
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, \frac{98-72x^{2}}{2y-5}'ны \frac{5p}{6x+7} тапкыр тапкырлагыз.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9qp^{2}}{3\left(2y-5\right)}}
\frac{9p^{2}q}{6y-15}-да әлегә хисапка алынмаган аңлатмалар формалары.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{3qp^{2}}{2y-5}}
3'дан санаучыда да, ваклаучыда да кыскарту.
\frac{5p\left(98-72x^{2}\right)\left(2y-5\right)}{\left(6x+7\right)\left(2y-5\right)\times 3qp^{2}}
\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}'ны \frac{3qp^{2}}{2y-5}'ның кире зурлыгына тапкырлап, \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}'ны \frac{3qp^{2}}{2y-5}'га бүлегез.
\frac{5\left(-72x^{2}+98\right)}{3pq\left(6x+7\right)}
p\left(2y-5\right)'дан санаучыда да, ваклаучыда да кыскарту.
\frac{2\times 5\left(-6x-7\right)\left(6x-7\right)}{3pq\left(6x+7\right)}
Әлегә хисапка алынмаган аңлатмалар формалары.
\frac{-2\times 5\left(6x-7\right)\left(6x+7\right)}{3pq\left(6x+7\right)}
-7-6x-дан тискәре санны чыгартыгыз.
\frac{-2\times 5\left(6x-7\right)}{3pq}
6x+7'дан санаучыда да, ваклаучыда да кыскарту.
\frac{-60x+70}{3pq}
Аңлатманы җәю.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}