x өчен чишелеш
x=-3
x=7
x=-2
x=2
Граф
Уртаклык
Клип тактага күчереп
\left(x-7\right)\left(x+3\right)\left(x^{2}-4\right)=0
Үзгәртүчән x -7,1-нең бер кыйммәтенә дә тигез булырга мөмкин түгел, чөнки нольгә бүлү билгеләнмәгән. Тигезләмәнең ике ягын \left(x-1\right)\left(x+7\right) тапкырлагыз.
\left(x^{2}-4x-21\right)\left(x^{2}-4\right)=0
x-7-ны x+3'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
x^{4}-25x^{2}-4x^{3}+16x+84=0
x^{2}-4x-21-ны x^{2}-4'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
x^{4}-4x^{3}-25x^{2}+16x+84=0
Тигезләмәне стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Элементларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
±84,±42,±28,±21,±14,±12,±7,±6,±4,±3,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 84 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=2
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{3}-2x^{2}-29x-42=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{3}-2x^{2}-29x-42 алу өчен, x^{4}-4x^{3}-25x^{2}+16x+84 x-2'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±42,±21,±14,±7,±6,±3,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын -42 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=-2
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{2}-4x-21=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{2}-4x-21 алу өчен, x^{3}-2x^{2}-29x-42 x+2'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 1-ны a өчен, -4-не b өчен, һәм -21-не c өчен алыштырабыз.
x=\frac{4±10}{2}
Исәпләүләрне башкарыгыз.
x=-3 x=7
± — плюс, ә ± — минус булганда, x^{2}-4x-21=0 тигезләмәсен чишегез.
x=2 x=-2 x=-3 x=7
Барлык табылган чишелешләрне күрсәтегез.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}