Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Тапкырлаучы
Tick mark Image

Уртаклык

\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Теләсә нәрсәне бергә бүлгәндә, бүленүче үзе килеп чыга.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} квадрат тамыры — 3.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Санаучыны \sqrt{2} ваклаучысына тапкырлап, \frac{1}{\sqrt{2}} ваклаучысын рационаллаштырыгыз.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} квадрат тамыры — 2.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{\sqrt{2}}{2}-ны дәрәҗәле итү өчен, санаучыны да, ваклаучыны да дәрәҗәлегә кадәр күтәрегез, аннары бүлегез.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} бер вакланма буларак чагылдыру.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Санаучыны \sqrt{3} ваклаучысына тапкырлап, \frac{2}{\sqrt{3}} ваклаучысын рационаллаштырыгыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} квадрат тамыры — 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}}{3}-ны дәрәҗәле итү өчен, санаучыны да, ваклаучыны да дәрәҗәлегә кадәр күтәрегез, аннары бүлегез.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} бер вакланма буларак чагылдыру.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
3'дан санаучыда да, ваклаучыда да кыскарту.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
2'ның куәтен 0 исәпләгез һәм 0 алыгыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
0 алу өчен, 5 һәм 0 тапкырлагыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
3 алу өчен, 3 һәм 0 өстәгез.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\left(2\sqrt{3}\right)^{2} киңәйтегез.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
2'ның куәтен 2 исәпләгез һәм 4 алыгыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} квадрат тамыры — 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
12 алу өчен, 4 һәм 3 тапкырлагыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
4 алу өчен, 12 3'га бүлегез.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
7 алу өчен, 3 һәм 4 өстәгез.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} квадрат тамыры — 2.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
8 алу өчен, 4 һәм 2 тапкырлагыз.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
2'ның куәтен 2 исәпләгез һәм 4 алыгыз.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
2 алу өчен, 8 4'га бүлегез.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
9 алу өчен, 7 һәм 2 өстәгез.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
4 алу өчен, 2 һәм 2 өстәгез.
\frac{9}{4-3}
\sqrt{3} квадрат тамыры — 3.
\frac{9}{1}
1 алу өчен, 4 3'нан алыгыз.
9
Теләсә нәрсәне бергә бүлгәндә, бүленүче үзе килеп чыга.