Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
u өчен чишелеш
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\left(y^{2}+z^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
Тигезләмәнең ике ягын y^{2}+z^{2} тапкырлагыз.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
y^{2}+z^{2} \frac{\mathrm{d}}{\mathrm{d}y}(u)'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(\left(y^{2}\right)^{2}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
\left(y^{2}+z^{2}\right)^{2}не җәю өчен, \left(a+b\right)^{2}=a^{2}+2ab+b^{2} бинома теоремасын кулланыгыз.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
Санның куәтен башка куәткә күтәрү өчен, экспоненталарны тапкырлагыз. 4 алу өчен, 2 һәм 2 тапкырлагыз.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+z^{4}\right)
Санның куәтен башка куәткә күтәрү өчен, экспоненталарны тапкырлагыз. 4 алу өчен, 2 һәм 2 тапкырлагыз.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}
-x y^{4}+2y^{2}z^{2}+z^{4}'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Барлык алмашынучан элементлар сул ягында булсын өчен, якларны алыштырыгыз.
-xy^{4}-2xy^{2}z^{2}-xz^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
-2 алу өчен, 2 һәм -1 тапкырлагыз.
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
x үз эченә алган барлык элементларны берләштерегез.
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=0
Тигезләмә стандарт формасында.
x=0
0'ны -y^{4}-2y^{2}z^{2}-z^{4}'га бүлегез.