Исәпләгез
-4
Тапкырлаучы
-4
Уртаклык
Клип тактага күчереп
\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. x+y һәм x-y-нең иң ким гомуми кабатлы саны — \left(x+y\right)\left(x-y\right). \frac{x-y}{x+y}'ны \frac{x-y}{x-y} тапкыр тапкырлагыз. \frac{x+y}{x-y}'ны \frac{x+y}{x+y} тапкыр тапкырлагыз.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} һәм \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)-да тапкырлаулар башкарыгыз.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Охшаш терминнарны x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}-да берләштерегез.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
x^{2}-y^{2} тапкырлаучы.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 1'ны \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} тапкыр тапкырлагыз.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} һәм \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)-да тапкырлаулар башкарыгыз.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
Охшаш терминнарны x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}-да берләштерегез.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}'ны \frac{xy}{\left(x+y\right)\left(x-y\right)}'ның кире зурлыгына тапкырлап, \frac{-4xy}{\left(x+y\right)\left(x-y\right)}'ны \frac{xy}{\left(x+y\right)\left(x-y\right)}'га бүлегез.
-4
xy\left(x+y\right)\left(x-y\right)'дан санаучыда да, ваклаучыда да кыскарту.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}