xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
\left\{\begin{matrix}x=-\frac{8\left(72+4z-y\right)}{8-31y}\text{, }&y\neq \frac{8}{31}\\x\in \mathrm{C}\text{, }&y=\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right.
yని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
\left\{\begin{matrix}y=\frac{8\left(x+4z+72\right)}{31x+8}\text{, }&x\neq -\frac{8}{31}\\y\in \mathrm{C}\text{, }&x=-\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right.
xని పరిష్కరించండి
\left\{\begin{matrix}x=-\frac{8\left(72+4z-y\right)}{8-31y}\text{, }&y\neq \frac{8}{31}\\x\in \mathrm{R}\text{, }&y=\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right.
yని పరిష్కరించండి
\left\{\begin{matrix}y=\frac{8\left(x+4z+72\right)}{31x+8}\text{, }&x\neq -\frac{8}{31}\\y\in \mathrm{R}\text{, }&x=-\frac{8}{31}\text{ and }z=-\frac{556}{31}\end{matrix}\right.
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
y=x+72-\frac{31}{8}xy+4z
93xని 24తో భాగించి \frac{31}{8}xని పొందండి.
x+72-\frac{31}{8}xy+4z=y
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x-\frac{31}{8}xy+4z=y-72
రెండు భాగాల నుండి 72ని వ్యవకలనం చేయండి.
x-\frac{31}{8}xy=y-72-4z
రెండు భాగాల నుండి 4zని వ్యవకలనం చేయండి.
\left(1-\frac{31}{8}y\right)x=y-72-4z
x ఉన్న అన్ని విలువలను జత చేయండి.
\left(-\frac{31y}{8}+1\right)x=y-4z-72
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{\left(-\frac{31y}{8}+1\right)x}{-\frac{31y}{8}+1}=\frac{y-4z-72}{-\frac{31y}{8}+1}
రెండు వైపులా 1-\frac{31}{8}yతో భాగించండి.
x=\frac{y-4z-72}{-\frac{31y}{8}+1}
1-\frac{31}{8}yతో భాగించడం ద్వారా 1-\frac{31}{8}y యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x=\frac{8\left(y-4z-72\right)}{8-31y}
1-\frac{31}{8}yతో y-72-4zని భాగించండి.
y=x+72-\frac{31}{8}xy+4z
93xని 24తో భాగించి \frac{31}{8}xని పొందండి.
y+\frac{31}{8}xy=x+72+4z
రెండు వైపులా \frac{31}{8}xyని జోడించండి.
\left(1+\frac{31}{8}x\right)y=x+72+4z
y ఉన్న అన్ని విలువలను జత చేయండి.
\left(\frac{31x}{8}+1\right)y=x+4z+72
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{\left(\frac{31x}{8}+1\right)y}{\frac{31x}{8}+1}=\frac{x+4z+72}{\frac{31x}{8}+1}
రెండు వైపులా 1+\frac{31}{8}xతో భాగించండి.
y=\frac{x+4z+72}{\frac{31x}{8}+1}
1+\frac{31}{8}xతో భాగించడం ద్వారా 1+\frac{31}{8}x యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
y=\frac{8\left(x+4z+72\right)}{31x+8}
1+\frac{31}{8}xతో x+72+4zని భాగించండి.
y=x+72-\frac{31}{8}xy+4z
93xని 24తో భాగించి \frac{31}{8}xని పొందండి.
x+72-\frac{31}{8}xy+4z=y
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x-\frac{31}{8}xy+4z=y-72
రెండు భాగాల నుండి 72ని వ్యవకలనం చేయండి.
x-\frac{31}{8}xy=y-72-4z
రెండు భాగాల నుండి 4zని వ్యవకలనం చేయండి.
\left(1-\frac{31}{8}y\right)x=y-72-4z
x ఉన్న అన్ని విలువలను జత చేయండి.
\left(-\frac{31y}{8}+1\right)x=y-4z-72
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{\left(-\frac{31y}{8}+1\right)x}{-\frac{31y}{8}+1}=\frac{y-4z-72}{-\frac{31y}{8}+1}
రెండు వైపులా 1-\frac{31}{8}yతో భాగించండి.
x=\frac{y-4z-72}{-\frac{31y}{8}+1}
1-\frac{31}{8}yతో భాగించడం ద్వారా 1-\frac{31}{8}y యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x=\frac{8\left(y-4z-72\right)}{8-31y}
1-\frac{31}{8}yతో y-72-4zని భాగించండి.
y=x+72-\frac{31}{8}xy+4z
93xని 24తో భాగించి \frac{31}{8}xని పొందండి.
y+\frac{31}{8}xy=x+72+4z
రెండు వైపులా \frac{31}{8}xyని జోడించండి.
\left(1+\frac{31}{8}x\right)y=x+72+4z
y ఉన్న అన్ని విలువలను జత చేయండి.
\left(\frac{31x}{8}+1\right)y=x+4z+72
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{\left(\frac{31x}{8}+1\right)y}{\frac{31x}{8}+1}=\frac{x+4z+72}{\frac{31x}{8}+1}
రెండు వైపులా 1+\frac{31}{8}xతో భాగించండి.
y=\frac{x+4z+72}{\frac{31x}{8}+1}
1+\frac{31}{8}xతో భాగించడం ద్వారా 1+\frac{31}{8}x యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
y=\frac{8\left(x+4z+72\right)}{31x+8}
1+\frac{31}{8}xతో x+72+4zని భాగించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}