xని పరిష్కరించండి
\left\{\begin{matrix}\\x=\log_{1.032}\left(2\right)\approx 22.005603579\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
yని పరిష్కరించండి
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=\frac{\ln(2)}{\ln(\frac{129}{125})}\end{matrix}\right.
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
y\times 1.032^{x}=2y
సమీకరణమును పరిష్కరించడం కోసం ఘాతాంకములు మరియు లాగరిథిమ్ల యొక్క నియమాలను ఉపయోగించండి.
1.032^{x}=2
రెండు వైపులా yతో భాగించండి.
\log(1.032^{x})=\log(2)
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను తీసుకోండి.
x\log(1.032)=\log(2)
ఘాతముతో హెచ్చించబడిన సంఖ్య యొక్క లాగరిథమ్ అనేది ఘాతముతో హెచ్చించబడిన సంఖ్య యొక్క లాగరిథమ్తో సమానం.
x=\frac{\log(2)}{\log(1.032)}
రెండు వైపులా \log(1.032)తో భాగించండి.
x=\log_{1.032}\left(2\right)
మూల సూత్రాన్ని మార్చడం ద్వారా \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
y\times 1.032^{x}-2y=0
రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
\left(1.032^{x}-2\right)y=0
y ఉన్న అన్ని విలువలను జత చేయండి.
y=0
1.032^{x}-2తో 0ని భాగించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}